201 Willowbrook Boulevard P.O. Box 290 Wayne, NJ 07470 201 785-0700 212 926-2878 Fax 201-785-0023

Woodward-Clyde Consultants

14 November 1990 87X4660

11-16-90

Mr Frank Battaglia USEPA Region I Waste Management Division 90 Canal Street Boston, MA 02114

Dear Frank:

Please find enclosed the revised Data Validation Appendix IX checklists for your final review, plus the Data Summary Forms to be utilized during the Remedial Investigation data validation/data reduction process.

If you have any questions on the above, please do not hesitate to contact Diana Baldi at 919-632-6000 or myself at 201-785-0700, Extension 372.

Very truly yours,

Senior Staff Scientist/Project Chemist

JPL:ef 87X4660\001.ltr

CC:

Diana Baldi

(Ciba Geigy) Joanna Hall (Alliance Corp)

Mark Houlday

(WCC)

CIBA-GEIGY INORGANIC REGION I WORKSHEETS RE-EDITED FOR APPENDIX IX CONSTITUENTS

Prepared by:

WOODWARD-CLYDE CONSULTANTS 201 WILLOWBROOK BOULEVARD WAYNE, NEW JERSEY 07470

CIBA GEIGY CORPORATION 410 SWING ROAD GREENSBORO, NORTH CAROLINA 27419

> Radian Corporation 8501 MO-PAC Blvd. Austin, Texas 78720

CIBA-GEIGY

INORGANIC REGION I WORKSHEET

<u>Background</u>: The term hazardous constituent used in the Solid Waste Disposal Act Section 3004(u) means constituents found in Appendix VIII of 40CFR part 261. EPA also defines hazardous constituents as those constituents identified in Appendix IX of 40CFR part 264. Appendix IX constituents generally constitutes a subset of Appendix VIII which are particularly suitable for ground water analyses.

In general, where very little is known of waste characteristics, and where there is a potential for a wide spectrum of wastes to have been released, only then is an owner/operator required to perform an extensive routine analysis for a broader spectrum of waste such as an Appendix IX analysis.

Radian Corporation of Austin, Texas, has been sub-contracted by WCC to analyze the 19 inorganic hazardous constituents in Appendix IX and will be utilizing the following SW-846 procedures listed in Table 1. As such, the enclosed Inorganic Region I Data Validation Worksheets have been modified accordingly for each fraction to conform to the QA/QC criteria of each SW-846 test methods in Table 1.

TABLE 1
SELECTED ANALYTICAL METHODS FOR INORGANIC APPENDIX IX ANALYSES

SW-846 Method	General Category/ Analyte	Technique	Number of Analytes Measured
6010	Metals	, ICP	11
7041	Antimony	GFAA	1
7060	Arsenic	GFAA	1
7421	Lead	GFAA	· 1
7470	Mercury	CVAA	1 .
7740	Selenium	GFAA	1
7841	Thallium	GFAA	1
9012	Cyanide	Colorimetric	1
9030	Sulfide	Titrimetric	1
		TOTAL	19

ICP - Inductively Coupled Plasma Spectrometry (all other metals)

GFAA - Graphite Furnace Atomic Absorption Spectrometry (normally only

arsenic, antimony, lead, selenium, and thallium)

CVAA - Cold Vapor Atomic Absorption Spectroscopy (mercury analyses only)

INORGANIC METALS SUMMARY TABLES

APPENDEX IL METALS

DATA SUMMARY FORM: IN ORGANICS

Page	of	
_		

Site Name:	·		WATER SAMPLES (TOTAL)	
Case #:	Sampling Date(s):	•	(µg/L)PPB NON-FILTERED SAMPL	ES

===	Sample No.	T T		<u> </u>		1		ir		ir———		1		T		1		1			-
	Dilution Factor	 		 		 		<u> </u>		 		 		 		∦		 			-
	Location	 		 		 		 		 		 		#		 		 _ _ 			
	200211011	ļ 				 				ļ —————		 		 		 	—-	 		ļ	
		1		i i		∦ ·		İ				l		H		1					
Pal	ANALYTE	cone.	a	cone.	Q.	cenc	a	cone.	a	cenc.	a	conc.	a	cenc.	a	conc.	a	conci	a.	conc.	a
==							\equiv	· · · · ·					$\overline{\mathbf{I}}$								7-
<u>3</u> 6	ANTIMON Y																				Τ
2	*Arsenic]										Ĭ,			1			Τ
/0	Barium										ļ —			Î		1					1
2	Beryllium				1															<u> </u>	1
5	*Cedmium																1		 		†
					-						=						1				#
10	*Chromium	1													<u> </u>	 		 			+
20	Cobelt	1	—									 		 		-	†	†	 		╅╴
20	Copper	 	 			 							 						1		╈
			-																		1
ج2	*Lead	1							<u> </u>		-	 -	 	 	-		-		_		+
		#														<u> </u>					┿
					 																\pm
0.2	Mercury				1				 				\vdash		-	ļ	 	∦			╁
	*Nickel	 	1		 				-		 			ļ	├	 	 	<u> </u>			╀
<u>20</u>	MICKEL	 	-				-		 					<u> </u>		ļ	 	 			╀
	Selenium	-			-						=						-		-		#
عد		<u> </u>		 	 	 		 	 								!	 	ļ		4-
10	Silver	 			-								ļ		<u> </u>		<u> </u>		<u> </u>		╀
100	TIN	 		ļ	 	<u> </u>							 				<u> </u>	<u> </u>			╄
2	Thellium				ļ	ļ										ļ			\Box		丄
20	Vanadium	 	1				Ш										L				$oldsymbol{\perp}$
20	Zinc											 	L								<u> </u>
<u>·</u>																					
		II														l					

Appendix I METALS

			_		_	_	_			_	_	_
DATA	SUMMARY	FORM:	I	N	0	R	G	A	N	Ι	C	8

WATER SAMPLES (DISSOLVED)

(Mg/L) PAB PLIFERED SAMPLES

Case	<i>4</i> :	Sampling	Date(s):	
		 F5		

Site Name:

	Sample No.	<u> </u>	 -			1		<u> </u>		<u></u>				 		<u> </u>		 			\neg
∥ (Dilution Factor												-								
	Location		_				_														_
1	I							<u> </u>													\neg
1					1	· .		İ								1			•	ł	- !
PaL	ANALYTE	como	a	0	0	Como	0	come	0	Carro	0	canc.	α	cenc.	a	ceme.	a	conc.	a.	cone.	
7	ANTIMON Y		\vdash	 													 				
7	*Arsenic																1				П
10	Barium																1				П
2	Beryllium																				
5	*Cedmium																				
10	*Chromium																				
20	Cobelt																				
20	Copper																				
																	<u> </u>				
3	*Lead																<u> </u>				Ш
																	<u> </u>				
							i														듸
0.2	Mercury														•		ļ				
20	*Nickel							ļ									<u> </u>		L		
																	<u> </u>				H
5	Selenium																<u> </u>		<u> </u>	 	Ш
10	Silver																<u> </u>	ļ		 	Ш
100.	TIN																<u> </u>	<u> </u>			Ш
ح	Thailium	•														<u> </u>			<u> </u>	 	Ш
20	Vanedium																ļ		L	 	
20	Zinc											,	ļ				ļ	_		ļ	
																	ļ		 		Ш
																			 	 	\sqcup
																			ļ	 	Ш
H II								l ·		ł				L		l		<u> </u>	L	i	Ш

APPENDIX I METALS

DATA	SUMMARY	FORM:	I	N	0	R	G	A	N	I	C	8

Page	01	!

lto Na	ame: _		_	SOFL	SAME	LES
_			•	Crus	elkg)	PPM
150 #1	·	Sampling Date(s):		. 0	U	

	Comic No	7				·								,							
	Sample No.							!		<u> </u>		<u> </u>									
	Dilution Factor					ii		<u>ll</u>				1		1		it					-
	Location			. ——-								11		 		1		╫───			
								<u> </u>				1		 		 		#		 	
						i .		li .				l		1		<u>I</u> I			-		
PaL	AKALYTE	cono.	a	0			_	11	_	<u> </u>		ļ <u> </u>	_	!	_	li .	_		•		į.
			T (2	Core.	<u></u>	conc.	<u> </u>	Conc.	<u> </u>	conc.	α	conc.	<u>u</u>	Conc.	<u>a</u>	conc.	<u>e</u> _	conc.	<u>a.</u>	conc.	<u>a</u>
									==						<u> </u>		辷				
3 0.2	ANTIMONY	<u> </u>			1			 	<u> </u>			<u> </u>	<u> </u>		<u> </u>	i	<u> </u>	1			\Box
	*Arsenic		-		—								L								
1.0	Barium																	į			П
0.2	Beryllium																				
0.5	*Cedmium																				+
			<u> </u>																		
1.0	*Chromium														 		 		-		┼╌╣
2	Cobelt														 		├	ļ			1-1
2	Copper				 			<u> </u>				 									╁╼╣
					1							 					 		Ь		\Box
- 1	*Lead																				
0.2	-1480								<u> </u>			ļ									Ш
			-																		
	· · · · · · · · · · · · · · · · · · ·																				
0.2	Mercury				<u> </u>																П
02	*Nickel																				H
																					\vdash
0.2	Selenium														_		-				\blacksquare
1.0	Silver		1		╫														\vdash		H
10	TIN	<u> </u>	┼ ┤		┼─┤													 	\vdash		\sqcup
	Thellium	 	} 					 						ļ			ļ				Щ
0.2			╁╼╾╂		├												ليبيا				
2	Vaned i um		 																		
2	Zinc						!				1										
																					\square
			1 1																_		
																				·	
		·				<u> </u>					إبيي			<u> </u>							الـــــــــــــــــــــــــــــــــــــ

REG	IOI	I V

Site Name	
Reference Number	<u> </u>

REGION I REVIEW OF INORGANIC SW-846 (3RD EDITION)

The hardcopied (labora been reviewed and the review included:	atory name) data performant	package received at Region I has nee data summarized. The data
Matrix: SDG. No.: No. of Samples: Sample Identifiers: Trip Blank No.: Equipment Blank No.: Field Dup Nos.:		Sampling Date(s): Shipping Date(s): Date Rec'd by Lab:
	requires that specific analytical wor performance were based on an exa	
-Matrix Spike -Laboratory D	es ence Check Results Recoveries	-Field Duplicates -Lab Control Sample Results -Furnace AA Results -ICP Serial Dilution Results -Detection Limit Results -Sample Quantitation
Overall Comments:	•	
Definitions and Qualifi	ers:	•
	nate data due to quality control crit ta due to quality control criteria	eria.
Reviewer:	I	Date:
CM90-246.IMT	Page 1 of 18	87X4660

I. DATA COMPLETENESS

MISSING INFORMATION DATE LAB CONTACTED DATE REC'D

II. HOLDING TIMES

Complete table for all samples and circle the analysis date for samples not within criteria.

pΗ

<u>ACTION</u>

HG CYANIDE OTHERS
SAMPLE DATE DATE DATE

ID SAMPLED ANALYSIS ANALYSIS ANALYSIS

METALS - 180 DAYS FROM SAMPLE COLLECTION MERCURY - 28 DAYS FROM SAMPLE COLLECTION CYANIDE - 14 DAYS FROM SAMPLE COLLECTION

ACTION:

- 1. If holding times are exceeded all positive results are estimated (J) and non-detects are estimated (UJ).
- 2. If holding times are grossly exceeded, the reviewer may determine that non-detects are unusable (R).

III A. INSTRUMENT CALIBRATION (Section 1)

1. Recovery Criteria

List the analytes which did not meet the percent recovery (%R) criteria for Initial or Continuing Calibration.

<u>DATE</u>	ICV/CCV#	<u>ANALYTE</u>	<u>%R</u>	<u>ACTION</u>	SAMPLES AFFECTED

ACTIONS:

If any analyte does not meet the %R criteria follow the actions stated below:

For Positive Results:

	Accept	Estimate (J)	Reject (R)
Metals	90-110%R	75-89%R, 111-125%R	<75%R, >125%R
Mercury	80-120%R	65-79%R, 121-135%R	<65%R, >135%R
Cyanide	85-115%R	70-84%R, 116-130%R	<70%R, >130%R
For Non-detect	ed Results:		
	Accept	Estimate (UJ)	Reject (R)

	Accept	Estimate (UJ)	Reject (R)
Metals	90-125%R	75-89%R	<75%R, >125%R
Mercury	80-135%R	65-79%R	<65%R, >135%R
Cyanide	85-130%R	70-84%R	<70%R, >130%R

CM90-246.IMT	Page 4 of 18	87X4660
CM190-240.1M1	rage 4 of 10	6/A400U

III B. INSTRUMENT CALIBRATION (Section 2)

2. Analytical Sequence

A. Did the laboratory use the proper number of standards for calibration as described in the SW-846 (3rd Edition) manual. There is no difference on the proper number of standards between the CLP-SOW and SW-846.

Yes or No

B. Were calibrations performed at the beginning of each day (or every 8 hours): whichever is more frequent.

Yes or No

C. Were midpoint calibration standards analyzed at the beginning of sample analysis and at a minimum frequency of ten percent?

Yes or No

D. Were the correlation coefficients for the calibration curves for AA, Hg, and $CN \le 0.995$?

Yes or No

If No,

The data may be affected. Use professional judgement to determine the severity of the effect and qualify the data accordingly. Discuss any actions below and list the samples affected.

IV A. BLANK ANALYSIS RESULTS (Sections 1-3)

List the blank contamination in Sections 1 & 2 below. A separate worksheet must be used for soil and water blanks.

MATRIX:

1. Laboratory Blanks

DATE ICB/CCB#

PREP BL

ANALYTE

CONC./UNITS

2. Equipment/Trip Blanks

DATE

EQUIP BL#

ANALYTE

CONC./UNITS

- 3. Frequency Requirements
 - A. Was a preparation blank carried through the entire analytical process for each matrix type or group of 20 samples, whichever is more frequent?

Yes or No

B. Was a reagent blank with a minimum of three standards run daily?

Yes or No.

C. If 20 or more samples were run, was a reagent blank analyzed along with a mid-range standard at a frequency of every 10 samples?

Yes or No

If No.

The data may be affected. Use professional judgement to determine the severity of the effect and qualify the data accordingly. Discuss any actions below, and list the samples affected.

Data Review Worksheets

IV B. BLANK ANALYSIS RESULTS (Section 4)

4. Blank Actions

The Action Levels for any analyte is equal to five times the highest concentration of that element's contamination in any blank. The action level for samples which have been concentrated or diluted should be multiplied by the concentration/dilution factor. No positive sample result should be reported unless the concentration of the analyte in the sample exceeds the Action Level (AL). Specific actions are as follows:

- 1. When the concentration is greater than the IDL, but less than the Action Level, report the sample concentration detected with a U.
- 2. When the sample concentration is greater than the Action Level, report the sample concentration unqualified.

MATRIX:		MATRI	X:		
ELEMENT	MAX. CONC./ UNITS	AL/ UNITS	ELEMENT	MAX. CONC./	AL/

NOTE: Blanks analyzed during a soil case must be converted to mg/kg in order to compare them with the sample results.

Multiplying this result by 5 to arrive at the action level gives a final result in mg/kg which can then be compared to sample results.

The SW-846 (3rd Edition) requirement is that the calibration blank be within a three (3) standard deviation window of the mean blank value. As such, gross blank contamination warrants the data validator to contact the laboratory to verify this was performed. List all anomalies in the Inorganic Regional Data Assessment.

Data Review Worksheets

V A. ICP INTERFERENCE CHECK SAMPLE (Sections 1 & 2)

1. Recovery Criteria

List any elements in the ICS AB solution which did not meet the criteria for %R. SW-846 (3rd Edition) does warrant a ±20% window of the true value. The laboratory in accordance with SW-846 Method 6010 must follow an established control limit of 1.5 times the standard deviation of the mean value. If reoccurring problems arise, contact the lab and determine if any deviation from this procedure has occurred.

DATE ELEMENT %R ACTION AFFECTED

ACTIONS:

If an element does not meet the %R criteria, follow the actions stated below:

	PERCENT RECOVERY			
	<50%	50-79%	>120%	
Positive Sample Results	R	J	J	
Non-detected Sample Results	R	UJ	Α	

2. Frequency Requirements

Were Interference QC samples run at the beginning and end of each batch analysis run or a minimum of twice per 8 hour working shift, whichever is more frequent?

Yes or No

If no,

The data may be affected. Use professional judgement to determine the severity of the effect and qualify the data accordingly. Discuss any actions below and list the samples affected.

CM90-246.IMT

Page 8 of 18

87X4660

Data Review Worksheets

VB. ICP INTERFERENCE CHECK SAMPLE (Section 3)

3. Report the concentration of any elements detected in the ICS A solution > 2xIDL that should not be present.

ELEMENT

CONC. DETECTED IN THE ICS

CONC. OF INTERFERENTS IN THE ICS

AL CA FE MG

Estimate the concentration produced by the interfering element in all affected samples. See guidelines for examples. List the samples affected by interferences below:

SAMPLE AFFECTED **ELEMENT AFFECTED** SAMPLE CONC.

SAMPLE INTERFERENT ESTIMATED CONC.

INTERF.

(ug/L)

AL CA FE MG

(ug/L)

ACTIONS:

- In general, the sample data can be accepted without qualification if the sample concentrations of Al, Ca, Fe, and Mg are less than 50% of their respective levels in the ICS solution.
- Estimate (J) positive results for affected elements for samples with levels of interferents 50% or more of that in the ICS solution.
- Reject (R) positive results if the reported concentration is due entirely to the interfering element.
- 4. Estimate (UJ) non-detected results for which false negatives are suspect.

Give explanations for any actions taken below:

REGIO Data Ro		orksheets						
VI.	MAT	RIX SPIKE						
TR#					MA	ATRIX:		
1.	Reco	very Criteria						
List the	percent	t recoveries for	r analytes	which did n	ot meet	the req	uired criteria.	
	pikes sa	pike added mple request sult						
Analyte		SS	SR	SR	S	%R	Action	
Matrix S	NS:	ctions apply to	-				tion by a factor	of 4 or more
1.		n is taken.	indution c	acceds the s	ріке со	neenina	non by a factor	or 4 or more
2.	If any	y analyte does	not meet	the %R crit	eria foll	low the	actions stated l	pelow;
					<u>PE</u> <30%		RECOVERY 30%-74%	<u>>125%</u>
Positive Non-det		Results Results	·		J R		UJ J	J No Action
2.	Frequ	uency Criteria						
	Ą.	Was a matri quency?	x spike pro	epared at th	-	red fre- s or No		

CM90-246.IMT

Page 10 of 18

A separate worksheet should be used for each matrix spike pair.

87X4660

MATRIX.

VII. LABORATORY DUPLICATES

List the concentrations of any analyte not meeting the criteria for duplicate precision. For soil duplicates, calculate the PQL in mg/kg using the sample weight, volume and percent solids data for the sample. Indicate what criteria was used to evaluate precision by circling either the RPD or PQL for each element.

MATRIA.					
Element	PQL* water soil ug/L mg/kg	<u>Sample #</u>	Duplicate #	RPD**	Action
	-888				-"
Antimony	30				
Arsenic	2				
<u>Barium</u>	10				
Beryllium	2		·		
Cadmium	5				
Chromium	10	·		·	
Cobalt	20		 		
Copper	20		· · · · · · · · · · · · · · · · · · ·	<u> </u>	
Lead	2				
Mercury	0.2		·		
Nickel	20				
<u>Selenium</u>	2	<u> </u>			
Silver	10		· · · · · · · · · · · · · · · · · · ·		
<u>Thallium</u>	2				
<u>Tin</u>	100			<u> </u>	
<u>Vanadium</u>	20	 			·
Zinc	20		.,		
Cyanide	10				

Laboratory Duplicate Actions should be applied to all other samples of the same matrix type.

ACTIONS:

- 1. Estimate (J) positive results for elements which have an RPD >20% for waters and >35% for soils.
- 2. If sample results are less than 5x the PQL, estimate (J) positive results for elements whose absolute difference is >PQL, (2xPQL for soils). If both samples are non-detected, the RPD is not calculated (NC).
- No specific detection limits are required in SW-846. All PQLs are of a recommended laboratory calculated nature. As such, all CLP-CRDLS will be substituted with the Radian calculated PQLs for reporting purposes.
- Mean RPD of ±20% or ±2 standard deviations of the last 25 runs (whichever is tighter) for all analytes as warranted by SW-846 (3rd Edition) protocols will be utilized.

VIII. FIELD DUPLICATES

List the concentrations of all analytes in the field duplicate pair. For soil duplicates, calculate the PQL in mg/kg using the sample weight, volume and percent solids data for the sample. Indicate what criteria was used to evaluate the precision by circling either the RPD or PQL for each element.

MATDIV.

			MATRIX:	-	
Element	<u>PQL</u> <u>water</u> <u>soil</u> ug/L mg/kg	Sample #	<u>Duplicate</u> #	<u>RPD**</u>	Action
Antimony	30				·
Arsenic	2				
Barium	10				
Beryllium	2				
Cadmium	5				
Chromium	10				
Cobalt	20				
Copper	20				
Lead	2				
Mercury	0.2				
Nickel	20				
Selenium	2				
Silver	10				
Sodium	5000				
Thallium	2				
Tin	100				
<u>Vanadium</u>	20			· · ·	
Zinc	20				
Cyanide	10				

Field Duplicate actions should be aplied to all other samples of the same matrix type.

ACTIONS:

- 1. Estimate (J) positive results for elementes which have an RPD >30% for waters and >50% for soils.
- 2. If sample results are less than 5x the PQL, estimate (J) positive results and (UJ) nondetected results for elements whose absolute difference is >2xPQL, (4xPQL for soils). If both samples are non-detected, the RPD is not calculated (NC).
- No specific detection limits are required in SW-846. All PQLs are of a recommended laboratory calculated nature. As such, all CLP-CRDLs will be substituted with the Radian calculated PQLs for reporting purposes.
- Mean RPD of ±20% or ±2 standard deviations of the last 25 runs (whichever is tighter) for all analytes as warranted based on SW-846 (3rd Edition) protocols will be utilized.

IX. LABORATORY CONTROL SAMPLE

1. Aqueous LCS

List any LCS recoveries not within the 80-120% criteria and the samples affected.

DATE ELEMENT %R ACTION SAMPLES AFFECTED

Note: The SW-846 (3rd Edition) LCS recovery window is ±20%. The current 80 - 100% window is acceptable.

2. Solid LCS

List any analytes that were not within the control windows set by the EPA manufacturers for the solid LCS sample. Lot specifications are available on request from Radian.

ELEMENT LCS CONC. CONTROL WINDOWS ACTION SAMPLES AFFECIED

ACTIONS:

AQUEOUS LCS	<u><50%</u>	<u>51-79%</u>	<u>>120%</u>
Positive Results	R	J J	
Non-detected Results	R	UJ A	

SOLID LCS <EPA Control Windows >EPA Control Windows

Positive Results

J J

Non-detected Results

UJ A

3. Frequency Criteria

A. Was an LCS analyzed for every matrix, every digestion batch, and every 20 samples? Yes or No

CM90-246.IMT Page 13 of 18 87X4660

X A. FURNACE ATOMIC ABSORPTION ANALYSIS

1. Duplicate Precision

Duplicate injections must agree within $\pm 20\%$.

If duplicate injections do not agree within $\pm 20\%$ for samples/elements the laboratory must rerun and report the lowest coefficient of variation as per SW-846 (3rd Edition) protocols.

2. Post Digestion Spike Recoveries

Spike recoveries met the 75-125% recovery criteria for all samples.

Method of Standard Addition (MSA) is not being performed during round I of sampling. (Refer to Action #3 below).

Note CLP requirements and not SW-846 will be used as guidance when applying the qualification actions below.

ACTIONS:

- 1. Estimate (J) positive results if duplicate injections are outside ± 20 % RSD or CV.
- 2. If the sample absorbance is <50% of post digestion spike absorbance the following actions should be applied:

	PERCE	NT RECOVERY	
	<10%	<u>11%-84%</u>	<u>>115%</u>
Positive Sample Results	R	J	.J
Non-detected Results	R	UJ	No Action

3. Estimate (J) sample results if MSA was required.

XI. INDUCTIVELY COUPLED PLASMA (ICP) SERIAL DILUTION ANALYSIS

Serial Dilutions were performed for each matrix and results of the diluted sample analysis agreed within ten percent of the original undiluted analysis as per CLP guidance and not SW-846 (3rd Edition) protocols.

				tical results did no IDL before dilution		within 10%
eport all nalysis.	results below	that do not m	neet the required	laboratory criteri	a, for IC	P serial dilu
IATRIX:		<u></u>				
LEMENT	Γ IDL	50xIDL	SAMPLE RESULT	SERIAL DILUTION	%D	ACTION
arium					·	
admium_			 			·
hromium_						
Juait	·-·	 			· · · · · · · · · · · · · · · · · · ·	
					,	 -
				·		
						
n						· · · · · · · · · · · · · · · · · · ·
	-					
inc				· · · · · · · · · · · · · · · · · · ·	-	- ·

Note: Sample result must be ≥50x PQL for calculation by serial dilution; then use ±10% original undiluted value as criteria.

XII. DETECTION LIMIT RESULTS

1. Instrument Detection Limits

Instrument Detection Limit results were present and found to be less than the Contract Required Detection Limits.

IDLs were not included in the data package on Form XI.

IDLs were present,	but the criteria was not n	net for the
following elements:		

2. Reporting Requirements

Were sample results on Form I reported down to the IDL not the CRDL for all analytes?

Yes or No

Were sample results that were analyzed by ICP for Se, Tl, As, or Pb at least 5X IDL.

Yes or No

Were sample weights, volumes, and dilutions taken into account when reporting detection limits on Form I.

Yes or No

If No,

The reported results may be inaccurate. Make the necessary changes on the data summary tables and request that the laboratory resubmit the corrected data.

XIII. SAMPLE QUANTITATION

Sample results fall within the linear range for ICP and within the calibrated range for all other parameters.

Sample results were beyond the linear range/calibration range of the instrument for the following samples/elements:

In the space below, please show a minimum of one sample calculation per method:

Lab formula:
$$\underset{\text{ug}}{\underline{\text{ug}}} \times \underset{\text{g}}{\underline{100 \text{ ml}}} = \underset{\text{ug/g}}{\underline{\text{ug/kg}}} \pmod{\frac{\text{kg}}{\text{kg}}}$$

Water
$$\underline{ug} \times \underline{100 \text{ ml}} = \underline{ug/l}$$

 $\underline{l} \quad 100 \text{ ml}$

ICP

FURNACE

MERCURY

CYANIDE

For soil samples, the following equation may be necessary to convert raw data values (usually reported in ug/L) to actual sample concentrations (mg/kg):

The lab is required to use 1 gram sample (wet weight) to 100 ml.

Wet weight concentration =

Solid digest conc. in
$$ug \times 200ml \times IL \times 1000gm \times 1mg = mg$$

$$L \quad 1 \text{ gm} \quad 1000 \text{ ml} \quad 1 \text{kg} \quad 1000ug \quad \text{kg}$$

In addition the sample results are converted to dry weight using the percent solids calculations:

Wet weight conc. X 100 = final concentration, dry weight (mg/kg) %solids

	MONOAME REGIC		MOLEOSIVIE	TAT ICE	
REFERENCE NO		SITE_			
LABORATORY	· .	NO. O	F SAMPLI		
SDG #					
CTT1 C 1 C	Γ ESD)				
SW-846 REVIEWER'S NAM	 E			•	
		COMP	LETION 1	DATE	·
	DATA ASSES	SMENT SUMN	MARY		
		ICP	AA	Hg	CYANIDE
1. HOLDING T	IMES	<u> </u>			
2. CALIBRATIO	ONS :	 :			:
3. BLANKS					
4. ICS	·				
5. LCS		<u></u>			
6. DUPLICATE	ANALYSIS	· 			
7. MATRIX SPI	KE				 .
8. MSA (not per	formed)			, , , , , , , , , , , , , , , , , , ,	
9. SERIAL DILL	UTION				
10. SAMPLE VE	RIFICATION	ę		•	· <u> </u>
11. OTHER QC				.	
12. OVERALL A	SSESSMENT				
M = Data qualifZ = Data unacco	o problems/or qualified ied due to major proble eptable. out do not affect data.		roblems.		
ACTION ITEMS:					
AREAS OF CONCERN-					
or our our					

CIBA-GEIGY INORGANIC REGION I WORKSHEETS RE-EDITED FOR APPENDIX IX CONSTITUENTS

Prepared by:

WOODWARD-CLYDE CONSULTANTS 201 WILLOWBROOK BOULEVARD WAYNE, NEW JERSEY 07470

CIBA GEIGY CORPORATION 410 SWING ROAD GREENSBORO, NORTH CAROLINA 27419

> Radian Corporation 8501 MO-PAC Blvd. Austin, Texas 78720

CIBA-GEIGY

INORGANIC REGION I WORKSHEET

<u>Background</u>: The term hazardous constituent used in the Solid Waste Disposal Act Section 3004(u) means constituents found in Appendix VIII of 40CFR part 261. EPA also defines hazardous constituents as those constituents identified in Appendix IX of 40CFR part 264. Appendix IX constituents generally constitutes a subset of Appendix VIII which are particularly suitable for ground water analyses.

In general, where very little is known of waste characteristics, and where there is a potential for a wide spectrum of wastes to have been released, only then is an owner/operator required to perform an extensive routine analysis for a broader spectrum of waste such as an Appendix IX analysis.

Radian Corporation of Austin, Texas, has been sub-contracted by WCC to analyze the 19 inorganic hazardous constituents in Appendix IX and will be utilizing the following SW-846 procedures listed in Table 1. As such, the enclosed Inorganic Region I Data Validation Worksheets have been modified accordingly for each fraction to conform to the QA/QC criteria of each SW-846 test methods in Table 1.

TABLE 1
SELECTED ANALYTICAL METHODS FOR INORGANIC APPENDIX IX ANALYSES

SW-846 Method	General Category/ Analyte	Technique	Number of Analytes Measured
6010	Metals	ICP	11
7041	Antimony	GFAA	1
7 060	Arsenic	GFAA	1
7421	Lead	GFAA	. 1
7470	Mercury	CVAA	1
7740	Selenium	GFAA	1
7841	Thallium	GFAA	. 1
9012	Cyanide	Colorimetric	1
9030	Sulfide	Titrimetric	1
		TOTAL	19

ICP - Inductively Coupled Plasma Spectrometry (all other metals)

GFAA - Graphite Furnace Atomic Absorption Spectrometry (normally only

arsenic, antimony, lead, selenium, and thallium)

CVAA - Cold Vapor Atomic Absorption Spectroscopy (mercury analyses only)

INORGANIC METALS SUMMARY TABLES

APPENDEX IL METALS

DATA SUMMARY FORM: I N O R G A N I C S

	7	v	т.	v		

			6-ROUND	
Site Name:			WATER SAMPLES (TOTAL)	
		•	(μ g/L) <i>ρρ</i> β	
Case #:	Sampling Date(s):		NON-FILTERED SAMPL	E,

+Due to dilution, sample quantitation limit is affected.

See dilution table for specifics.

•	le No.																				
Dilution			_	<u> </u>		l															
Loc	cation															<u></u>					
Pal Analy	**		_										<u></u>		0	-					
Pal AKALY	16 	cone.	- 4	Conc.	<u></u>	cenc	<u> </u>	Conc.	<u> </u>	_Conc.	<u>u</u>	CBNC.	<u> </u>	Cork.		Corn.		COTIC		Corre	
	- 44		1—																		7-
30 ANTIN	ON Y		╁	#	├	 	 	l	 				_			<u> </u>			-		╅
		 	 	<u> </u>	 -	<u> </u>	_					 	-	 	_		 	 			╬
·	·	 	┼	 	 								<u> </u>	 	\vdash	 	 	ļ	-	1	┿
a Beryl		 	-	<u> </u>	 	 							 -	ļ			-		 		┿
5 *Cadmi		 	 	 	ļ	 	<u> </u>		 -				<u> </u>		 	ļ ————			-		士
			-		=																干
/O *Chrom		 		 	<u> </u>	<u> </u>			-					ļ	-	ļ					╬
20 Cobel		 	_	 	 	 .			ļ							ļ	 		 	ļ	+
20 Coppe	r		 	!	ļ	 											├ ──		-	ļ	+
			-	*															=		#
عد °Lead			↓	<u> </u>	<u> </u>				ļ				<u> </u>		-		 		<u> </u>		+
			 		=											ļ	 				#
			_																		#
22 Mercu			1				<u> </u>			• • •					 	ļ	 	ļ	<u> </u>		4
20 Nicke	<u> </u>		J					ļ													4
																					丰
2 Selen	ium		T						<u> </u>									<u> </u>	L		4
10 Silve	r																				_
00 TIA	/		1																		\perp
2 Theil		<u> </u>	1																		
20 Vaned			1	1														·			$oldsymbol{\mathbb{I}}$
20. 2 inc		#	1	 	†																$oldsymbol{\mathbb{I}}$
-		#	+	 	1	-			1												$oldsymbol{ o}$
 		 	+	1	1	1															Т
		 	+	#	1	#		1											Г		T
		#	┼	#		 	_	 			\vdash		┢┈┈	 							十

Pal = Contract Required Detection Limit
PRACTICAL QUANTITATION

*Action Level Exists

SEE NARRATIVE POR CODE DEFINITIONS revised /0/90

Appendix I METALS

			_		_	_	_			_	_	_	
DATA	SUMMARY	PORM:	I	N	O	R	G	A	N	I	C	8	

Page or
Page 01

Site	Name :		
------	--------	--	--

GROUND .

WATER SAMPLES (DISSOLVED)

(µg/L) PPB

ALTEPED SAMPLES

Case #: ____ Sampling Date(s): ____

Dİ	Sample No. Lution Factor Location																				_
ar.	ANALYTE	cone.	a	Cons.	Q.	cenc	a	conc.	a	conc.	a	conc.	a	Conc.	a	conc.	a	Conc.	a.	cone.	
																					3
7 1	MTIMON &																				_
	*Arsenic																		Ш		
,	Barium																				
2	Beryllium																				_
5	*Cednium																				_
																					_
0	*Chromium											,									_
20	Cobelt																	<u></u>	<u> </u>		_
0	Copper																<u> </u>				_
																					=
3	*Lead	1													<u> </u>	·					_
	· · · · · · · · · · · · · · · · · · ·																				_
																					_
12	Hercury																		<u> </u>		_
0	*Nickel																				_
		!	1																		_
-	Selenium	<u> </u>																			_
,	Silver	1																			
0.	TIN	1	1																		
-	Thellium	1			· ·																_
0	Venedium		1																		
0	Zinc	#	1	1																	_
-		 	+		1																_
╌╫╌	 	#	+	 	-	 															
-#		 	+	 	 	 			 												•
#-		#	+	 	-	 	 		 					H	Ι					1	

DATA SUMMARY FORM: I N O R G A N I C S

Page	of	
------	----	--

ite Name:			SOIL BAMPLES
		•	(uglkg) PPM
Ase #:	Sampling Date(s):		o. 9

+Due to dilution, sample quantitation limit is affected.

See dilution table for specifics.

								•					`		8	ee dilu	tion	table	for	specif	fi
	Sample No.										-]	****						=
Đ	ilution factor																			•	_
	Location																				_
										 						1		†			-
		ļ						<u>[</u>]		ļ.						1					
24	ANALYTE	cono.	a	Cone.	Q.	conce	a	cene.	Q	conc.	a	cone.	a	conc.	a	conc.	a	conc.	a.	cone	٤,
																					_
1	ANTIMON Y							· _													_
2 T	*Arsenic		•																		_
7	Barium					ł															
2	Beryllium																1				
-	*Cednius																				-
1											=						\vdash				-
d	*Chromium																	Ĭ .			
	Cobelt																				
1	Copper																				
4															\equiv		二				_
2	*Lead																				
#																	=				_
#							ΙΞ.				_										-
1	Mercury																				•
	*Nickel																1				•
1			\vdash								_										_
2	Seienium																1				•
1	Silver	1	1						1							<u> </u>	1				•
	TIN	1				1												·			-
,#	Thellium	1	1										_	1			1			<u> </u>	•
2	Venedium	1	1			 	1		1						_		1				•
#	Zinc	#	1			<u> </u>			 	l			 				·				•
.#		1	1				 		1				_		-		1				•
╫	`	 	+	-		1		 	 		<u> </u>		\vdash				†				-
┪		#	1		1	#			1				_		 		t				-
┪	'	 	+		+		 		 	 				<u> </u>			╅		1		-

Pal = Contract Required Detection-Limit
PRACTICAL QUANTITATION

*Action Level Exists

SEE NARRATIVE POR CODE DEPINITIONS revised /0/90

DE	GI	\cap	N	T
ΛL	U	V.		1

Site Name	
Reference Numb	per

REGION I REVIEW OF INORGANIC SW-846 (3RD EDITION)

The hardcopied (laboratory nanbeen reviewed and the quality review included:	ne) dat assurance and perform	a package received at Region I has ance data summarized. The data
Matrix: SDG. No.: No. of Samples: Sample Identifiers: Trip Blank No.: Equipment Blank No.: Field Dup Nos.:		Sampling Date(s): Shipping Date(s): Date Rec'd by Lab:
SW-846 (3rd Edition) requires used to determine the performa		work be done. The general criteria examination of:
-Data Completeness -Holding Times -Calibrations -Blanks -ICP Interference Che -Matrix Spike Recover -Laboratory Duplicate	ries	-Field Duplicates -Lab Control Sample Results -Furnace AA Results -ICP Serial Dilution Results -Detection Limit Results -Sample Quantitation
Overall Comments:		
Definitions and Qualifiers:		
* *	due to quality control of quality control of quality control criterial ted	
Reviewer:		Date:
CM90-246.IMT	Page 1 of 18	87X4660

I. DATA COMPLETENESS

MISSING INFORMATION

DATE LAB CONTACTED

DATE REC'D

Data Review Worksheets

II. HOLDING TIMES

Complete table for all samples and circle the analysis date for samples not within criteria.

HG CYANIDE OTHERS
SAMPLE DATE DATE DATE

<u>ID SAMPLED ANALYSIS ANALYSIS PH ACTION</u>

METALS - 180 DAYS FROM SAMPLE COLLECTION MERCURY - 28 DAYS FROM SAMPLE COLLECTION CYANIDE - 14 DAYS FROM SAMPLE COLLECTION

ACTION:

- 1. If holding times are exceeded all positive results are estimated (J) and non-detects are estimated (UJ).
- 2. If holding times are grossly exceeded, the reviewer may determine that non-detects are unusable (R).

REGION I

Data Review Worksheets

III A. INSTRUMENT CALIBRATION (Section 1)

1. Recovery Criteria

List the analytes which did not meet the percent recovery (%R) criteria for Initial or Continuing Calibration.

DATE	ICV/CCV#	<u>ANALYTE</u>	<u>%R</u>	<u>ACTION</u>	SAMPLES AFFECTED
------	----------	----------------	-----------	---------------	------------------

ACTIONS:

If any analyte does not meet the %R criteria follow the actions stated below:

For Positive Results:

CM90-246.IMT

	Accept	Estimate (J)	Reject (R)
Metals Mercury Cyanide	90-110%R 80-120%R 85-115%R	75-89%R, 111-125%R 65-79%R, 121-135%R 70-84%R, 116-130%R	<75%R, >125%R <65%R, >135%R <70%R, >130%R
For Non-detect	ed Results:		
	Accept	Estimate (UJ)	Reject (R)
Metals Mercury Cyanide	90-125%R 80-135%R 85-130%R	75-89%R 65-79%R 70-84%R	<75%R, >125%R <65%R, >135%R <70%R, >130%R

Page 4 of 18

87X4660

REGION I Data Review Worksheets

III B. INSTRUMENT CALIBRATION (Section 2)

2. Analytical Sequence

A. Did the laboratory use the proper number of standards for calibration as described in the SW-846 (3rd Edition) manual. There is no difference on the proper number of standards between the CLP-SOW and SW-846.

Yes or No

B. Were calibrations performed at the beginning of each day (or every 8 hours): whichever is more frequent.

Yes or No

C. Were midpoint calibration standards analyzed at the beginning of sample analysis and at a minimum frequency of ten percent?

Yes or No

D. Were the correlation coefficients for the calibration curves for AA, Hg, and CN ≤ 0.995?

Yes or No

If No,

The data may be affected. Use professional judgement to determine the severity of the effect and qualify the data accordingly. Discuss any actions below and list the samples affected.

REGION I Data Review Worksheet

IV A. BLANK ANALYSIS RESULTS (Sections 1-3)

List the blank contamination in Sections 1 & 2 below. A separate worksheet must be used for soil and water blanks.

MATRIX:

1. Laboratory Blanks

DATE ICB/CCB#

PREP BL

ANALYTE

CONC./UNITS

2. Equipment/Trip Blanks

DATE

EQUIP BL#

ANALYTE

CONC./UNITS

- 3. Frequency Requirements
 - A. Was a preparation blank carried through the entire analytical process for each matrix type or group of 20 samples, whichever is more frequent?

Yes or No

B. Was a reagent blank with a minimum of three standards run daily?

Yes or No

C. If 20 or more samples were run, was a reagent blank analyzed along with a mid-range standard at a frequency of every 10 samples?

Yes or No

If No,

The data may be affected. Use professional judgement to determine the severity of the effect and qualify the data accordingly. Discuss any actions below, and list the samples affected.

REGION I Data Review Worksheets

IV B. BLANK ANALYSIS RESULTS (Section 4)

4. Blank Actions

The Action Levels for any analyte is equal to five times the highest concentration of that element's contamination in any blank. The action level for samples which have been concentrated or diluted should be multiplied by the concentration/dilution factor. No positive sample result should be reported unless the concentration of the analyte in the sample exceeds the Action Level (AL). Specific actions are as follows:

- 1. When the concentration is greater than the IDL, but less than the Action Level, report the sample concentration detected with a U.
- 2. When the sample concentration is greater than the Action Level, report the sample concentration unqualified.

MATRIX:			MATRI	X:	
ELEMENT	MAX. CONC./ UNITS	<u>AL/</u> UNITS	ELEMENT	MAX. CONC./ UNITS	<u>AL/</u> UNITS

NOTE: Blanks analyzed during a soil case must be converted to mg/kg in order to compare them with the sample results.

Multiplying this result by 5 to arrive at the action level gives a final result in mg/kg which can then be compared to sample results.

The SW-846 (3rd Edition) requirement is that the calibration blank be within a three (3) standard deviation window of the mean blank value. As such, gross blank contamination warrants the data validator to contact the laboratory to verify this was performed. List all anomalies in the Inorganic Regional Data Assessment.

REGION I

Data Review Worksheets

V A. ICP INTERFERENCE CHECK SAMPLE (Sections 1 & 2)

1. Recovery Criteria

List any elements in the ICS AB solution which did not meet the criteria for %R. SW-846 (3rd Edition) does warrant a ±20% window of the true value. The laboratory in accordance with SW-846 Method 6010 must follow an established control limit of 1.5 times the standard deviation of the mean value. If reoccurring problems arise, contact the lab and determine if any deviation from this procedure has occurred.

DATE ELEMENT %R ACTION AFFECTED

ACTIONS:

If an element does not meet the %R criteria, follow the actions stated below:

	PERCENT RECOVERY					
	<50%	50-79%	>120%			
Positive Sample Results	R	J	J			
Non-detected Sample Results	R	UJ	Α			

2. Frequency Requirements

Were Interference QC samples run at the beginning and end of each batch analysis run or a minimum of twice per 8 hour working shift, whichever is more frequent?

Yes or No

If no,

The data may be affected. Use professional judgement to determine the severity of the effect and qualify the data accordingly. Discuss any actions below and list the samples affected.

87X4660

REGION I Data Review Worksheets

V B. ICP INTERFERENCE CHECK SAMPLE (Section 3)

3. Report the concentration of any elements detected in the ICS A solution > 2xIDL that should not be present.

ELEMENT

CONC. DETECTED IN THE ICS

CONC. OF INTERFERENTS
IN THE ICS
AL CA FE MG

Estimate the concentration produced by the interfering element in all affected samples. See guidelines for examples. List the samples affected by interferences below:

SAMPLE AFFECTED

ELEMENT AFFECTED SAMPLE CONC. (ug/L) SAMPLE INTERFERENT CONC.

AL

CA FE MG

ESTIMATED INTERF.

(ug/L)

ACTIONS:

- 1. In general, the sample data can be accepted without qualification if the sample concentrations of Al, Ca, Fe, and Mg are less than 50% of their respective levels in the ICS solution.
- 2. Estimate (J) positive results for affected elements for samples with levels of interferents 50% or more of that in the ICS solution.
- 3. Reject (R) positive results if the reported concentration is due entirely to the interfering element.
- 4. Estimate (UJ) non-detected results for which false negatives are suspect.

Give explanations for any actions taken below:

REGION Data Rev		orksheets					
VI.	MATI	RIX SPIKE		-		•	
TR#				MA	TRIX:		
1.	Recov	ery Criteria					
List the p	ercent	recoveries for analytes	which did not	meet	the requ	uired criteria.	
	kes san	ike added aple request alt					
Analyte		SSR	SR	S	%R	Action	
Matrix Sp	S:	tions apply to all samp					
1.		sample concentration is taken.	exceeds the sp	ike co	ncentrat	ion by a factor	of 4 or more, no
2.	If any	analyte does not meet	t the %R criter	ia foll	low the	actions stated b	elow:
			<u>:</u>	<u>PE</u> <30%		RECOVERY 30%-74%	>125%
Positive S Non-dete				J R		UJ .	J No Action
2.	Frequ	ency Criteria					
	A.	Was a matrix spike p quency?	repared at the		red fre- s or No		
A separat	e work	sheet should be used i	for each matrix	spike	pair.		

Page 10 of 18

CM90-246.IMT

87X4660

MATRIX.

VII. LABORATORY DUPLICATES

List the concentrations of any analyte not meeting the criteria for duplicate precision. For soil duplicates, calculate the PQL in mg/kg using the sample weight, volume and percent solids data for the sample. Indicate what criteria was used to evaluate precision by circling either the RPD or PQL for each element.

MAIKIA:				•	
Element	PQL* water soil ug/L mg/kg	Sample #	Duplicate #	RPD**	<u>Action</u>
Antimony	30				
Arsenic	2 i				
Barium	10		-		
Beryllium	2				
Cadmium	5				
Chromium	10				
Cobalt	20				
Соррег	20				
Lead	2				
Mercury	0.2				
Nickel	20				
Selenium	2				
Silver	10				
Thallium	2				
Tin	100				
Vanadium	20 (
Zinc	20 /				
Cyanide	10/			,	
	` /			_	

Laboratory Duplicate Actions should be applied to all other samples of the same matrix type.

ACTIONS:

- 1. Estimate (J) positive results for elements which have an RPD >20% for waters and >35% for soils.
- 2. If sample results are less than 5x the PQL, estimate (J) positive results for elements whose absolute difference is >PQL, (2xPQL for soils). If both samples are non-detected, the RPD is not calculated (NC).
 - No specific detection limits are required in SW-846. All PQLs are of a recommended laboratory calculated nature.

 As such, all CLP-CRDLS will be substituted with the Radian calculated PQLs for reporting purposes.
- ** Mean RPD of ±20% or ±2 standard deviations of the last 25 runs (whichever is tighter) for all analytes as warranted by SW-846 (3rd Edition) protocols will be utilized.

VIII. FIELD DUPLICATES

List the concentrations of all analytes in the field duplicate pair. For soil duplicates, calculate the PQL in mg/kg using the sample weight, volume and percent solids data for the sample. Indicate what criteria was used to evaluate the precision by circling either the RPD or PQL for each element.

			MATRIX:	_	
<u>Element</u>	<u>POL</u> <u>water</u> <u>soil</u> ug/L mg/kg	Sample #	<u>Duplicate</u> #	RPD**	Action
Antimony	30				
Arsenic	2		 		
Barium		··			
Beryllium	2		<u> </u>		
Cadmium	5				
Chromium	10				
Cobalt	20			<u> </u>	
Copper	20	- · · · · · · · · · · · · · · · · · · ·			
Lead	2		<u>, , , , , , , , , , , , , , , , , , , </u>		
Mercury	0.2			· · · · · · · · · · · · · · · · · · ·	
Nickel	20			·	
Selenium	2				
Silver	10				
Sodium	5000				
Thallium				······	
Tin	100				
Vanadium	20				
Zinc	20		·	 	·
Cyanide	10				

Field Duplicate actions should be aplied to all other samples of the same matrix type.

ACTIONS:

- 1. Estimate (J) positive results for elementes which have an RPD >30% for waters and >50% for soils.
- 2. If sample results are less than 5x the PQL, estimate (J) positive results and (UJ) nondetected results for elements whose absolute difference is >2xPQL, (4xPQL for soils). If both samples are non-detected, the RPD is not calculated (NC).
 - No specific detection limits are required in SW-846. All PQLs are of a recommended laboratory calculated nature. As such, all CLP-CRDLs will be substituted with the Radian calculated PQLs for reporting purposes.
- •• Mean RPD of ±20% or ±2 standard deviations of the last 25 runs (whichever is tighter) for all analytes as warranted based on SW-846 (3rd Edition) protocols will be utilized.

REGION I Data Review Worksheets

IX. LABORATORY CONTROL SAMPLE

1. Aqueous LCS

List any LCS recoveries not within the 80-120% criteria and the samples affected.

DATE ELEMENT %R ACTION SAMPLES AFFECTED

Note: The SW-846 (3rd Edition) LCS recovery window is ±20%. The current 80 - 100% window is acceptable.

2. Solid LCS

List any analytes that were not within the control windows set by the EPA manufacturers for the solid LCS sample. Lot specifications are available on request from Radian.

ELEMENT LCS CONC. CONTROL WINDOWS ACTION SAMPLES AFFECTED

ACTIONS:

AQUEOUS LCS	<u><50%</u>	<u>51-79%</u>	<u>>120%</u>
Positive Results Non-detected Results	R R	J J UJ A	

SOLID LCS <EPA Control Windows >EPA Control Windows

Positive Results

J J

Non-detected Results

UJ A

3. Frequency Criteria

A. Was an LCS analyzed for every matrix, every digestion batch, and every 20 samples? Yes or No

CM90-246.IMT Page 13 of 18 87X4660

CIBA-GEIGY ORGANIC REGION I WORKSHEETS RE-EDITED FOR APPENDIX IX CONSTITUENTS

Prepared by:

WOODWARD-CLYDE CONSULTANTS 201 WILLOWBROOK BOULEVARD WAYNE, NEW JERSEY 07470

CIBA GEIGY CORPORATION
410 SWING ROAD
GREENSBORO, NORTH CAROLINA 27419

Radian Corporation 8501 MO-PAC Blvd. Austin, Texas 78720

CIBA-GEIGY ORGANIC REGION I WORKSHEET

<u>Background</u>: The term hazardous constituent used in the Solid Waste Disposal Act Section 3004(u) means constituents found in Appendix VIII to 40CFR part 261. EPA also defines those constituents identified in Appendix IX to 40CFR part 264. Appendix IX constituents generally constitutes a subset of Appendix VIII particularly suitable for ground water analyses.

In general, where very little is known of waste characteristics, and where there is a potential for a wide spectrum of wastes to have been released, only then is the owner/operator required to perform an extensive routine analysis for a broader spectrum of waste such as an Appendix IX analysis.

Radian Corporation of Austin, Texas, has been sub-contracted by WCC to analyze the 218 organic hazardous constituents in Appendix IX and will be utilizing the following SW-846 procedures listed in Table 1. As such, the enclosed Organic Region I Data Validation Worksheets have been modified accordingly for each fraction to conform to the QA/QC criteria of each SW-846 test methods in Table 1.

TABLE 1
SELECTED ANALYTICAL METHODS FOR ORGANIC APPENDIX IX ANALYSES

SW-846 Method	General Category/ Analyte	Technique	Number of Analytes Measured
8080	Organochlorine Pesticides and PCBs	GC/ECD	28
8140	Organophosphorus Pesticides	GC/FPD	9
8150	Herbicides	GC/ECD	4
8240	Volatile Organics	GC/MS	*54
8270	Semivolatile Organics	GC/MS	**111
8280	Dioxins and Furans	GC/MS	12
		TOTAL	218

GC/ECD - Gas Chromatography/Electron Capture Detection
GC/EPD - Gas Chromatography/Flame Photometric Detection
GC/MS - Gas Chromatography/Mass Spectrometry

* This number includes three analytes (1,4-Dioxane, isobutanol, methacrylonitrile) that will be analyzed by Method 8240 Direct Injection.

** This number includes Appendix IX analytes, however, this number will increase based on site specific compounds that will be analyzed by Method 8270, also. Sym-Trinitrobenzene will be analyzed as a tentatively identified compound due to unavailability of standard.

ORGANIC

SUMMARY TABLES

organico	:	10f20	
----------	---	-------	--

DATA SUMMARY FORM: VOLATILES 1

Appendix IX
WATER SAMPLES
(µg/L)

:886	#1		Sampling	Date(s):	
------	----	--	----------	----------	--

lite Name:

To calculate sample quantitation limit: (CRQL * Dilution Factor)

=															7	Q L			
	Sample No.											T -		1		7			
	Dilution Factor	ļ		↓								1		#				 	
	Location	ļ		<u> </u>										 		 		 	
		H		l										#		#		#	┈╢
		¥ .		1		 .				il .		I		H		<u> </u>		il .	ı
		H		l		l				1		l		1		l			- 1
Pal	COMPOUND	cons.	a	404	_					ĺ							. •	l	İ
10	Chloromethane	COMO.		cone.	a	conc.	a	Conc.	<u> </u>	conc.	a	cone.	a	conc.	a	conc.	a	Conc.	a
10	Bromomethane	 	1-		1-				├—	 	 	 							
10	*Vinyl Chloride	 	+	 			 			 	-	!	ļ		L				
10	Chloroethane		1		1		 										1		
108	*Methylene Chloride				\vdash		 		-		-	· 							
100	Acetone		1							 	-				1_				
5	Carbon Disulfide		 - 										 		-	ļ	-		Ш
5	*1,1-Dichloroethene						-						 						Ш
5	1,1-Dichloroethane						-						\vdash		\vdash		-		Ш
5	*Total 1,2-Dichloroethene											ļ ———					 		Ш
5_	Chloroform									<u> </u>		 	 						Щ
5	*1,2-Dichloroethane										-	 					├ ─		Ш
100	*2-Butanone (NEK)						-#				-				 	ļ	 		\square
5	*1,1,1-Trichtoroethane						#								-				\boldsymbol{H}
5	*Carbon Tetrachloride						- #									·			_
10	Vinyl Acetate						#												
5	Bromodichloromethane						#												
75	ACROLEIN																		— ii
50	ACRYLONITRILE						#		- 								┡		
20		· · · · · · · · · · · · · · · · · · ·			- #		#		#									<u></u>	_
5	3-CHLOROPROPENE						-#		—∦		╼╌╫		∦				#		∦
25	J-CHLORD-1, 3-BUTADIENE				-#				 		┈╫		#		#				∥
19,000	1,4-DIOXANE				#		-#		┈╢		┉╢				∦				
20	DICHLORODIFLUOROMETHANE						 #				∦		╼╢		┈╢				
													الــــــــــــــــــــــــــــــــــــ		i		1		li i

PQL = Proched Quantitation Limit

Action Level Exists

SEE NARRATIVE FOR CODE DEFINITIONS

revised 07/90

a = dara validarin qualitui

Prepared by: JPL (Woodward · Clude)

Page	of	_
4-	~.	

DATA SUMMARY FORM: VOLATILES 2

Appendix IX
WATER SAMPLES
(µg/L)

5200		
Case	#1	Sampling Date(s):

To calculate sample quantitation limit:
(CRQL * Dilution Factor)

																			\neg
	Sample No.																		
[[Dilution Factor																		
[Location																		
li			ŀ		.						ľ		- 1		ŀ			i	ľ
						Ì				1					1			A	ı
												1					<i>;</i>	il e	
FROL	COMPOUND	conc.	a	conc.	a	cone.	a	cone.	a	cone.	a	cone.	a	cone.	a	conc.	a	conc.	a
5	*1,2-Dichloropropane						<u> </u>										 	 	+
5	Cis-1,3-Dichloropropane						 										╁──┤	 	╁╌╢
5	· Trichloroethene													 			 	 	╂┤
5	Dibromochloromethane						<u> </u>		ļ	ļ							-	 	╁┤
5	1,1,2-Trichlorethane						<u> </u>	ļ							-		-		+
5	*Benzene						 		<u> </u>					 	 		├	 	╁╼┨
5	Trans-1,3-Dichtoropropene		1			ļ	↓	 	 			 			-	 		 	╂╼┨
5	Bromoform						 	 	<u> </u>					ļ	┝╾┤	 	1	 	+
50,18	4-Methyl-2-pentanone					ļ	↓	 								 	╁╌╴	 	╂╼┦
5018	2-Nexanone					<u> </u>	↓	 	<u> </u>						╁╾┤		┼	 	╂╌┦
5	*Tetrachloroethene					 		 	!	 					 	 	╂──	 	+-
5	1,1,2,2-Tetrachloroethane				<u> </u>		↓	 	 	ļ			-	 -	-		∤	 	+-
5	*Toluene		<u> </u>		<u> </u>		↓	 	├	 		ļ <u></u>	 -	ļ	-		+	 	+
5	*Chlorobenzene		<u> </u>			<u> </u>	↓	 	ļ			<u> </u>	 	ļ	┼	 	┼──	 	╂╌
5	*Ethylbenzene		Ĭ				↓		<u> </u>	 	 	 -		ļ	├	 	╂──	╫	+
5	*Styrene						 		 	∦		 		 	├ ──	ļ ————	╫	 	╂╾
5	*Total Xylenes		<u> </u>	<u> </u>			↓	 	ļ	 		 	├	ļ <u>.</u>	╂	 	╂─╌	 	+
5	TRANS-1, 2 - DICHLOROETHENE				1		↓	 		ļ	├	 	├ ──	<u> </u>	╁┈╴	 	╁──	 	+
10	1,2 - DI BRONDETHANE				<u> </u>	ļ	-	 	 	ļ	 	₩	├ ─	 	╁─	 	┿┈	 	+-
10	TRANS-1,4-DICHLORO-2-BUTENE			<u> </u>			 	1	 	 	 	 	├ ─	 	╂─	 	+	#	+-
20							4—	 	↓		 	 	├	 	┼	 	+	#	+
10	ETHYL METHACRYLATE						4	1	↓	 	├	 	 —	 	┼─	 	+-	#	+-
5	IDOMETHANE					ļ	4—		↓		├ —	ļ	├	 	+	 	1	#	+-
10,000	 					<u> </u>		<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	حــــال	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	<u>.L</u>	DEFINIT	

CRQL = Contract Required Quantitation Limit

*Action Level Exists

SEE NARRATIVE FOR CODE DEFINITIONS

revised 07/90

PQL = Proctical Quantitation Limit
Q = Dara Validation qualities

Prepared by: JPL (Woodward - Clark "

	_	
Page	οf	•
3-	 	

VOLATILE

DATA SUMMARY FORM: ORGANICS 3

Appendix II WATER SAMPLES (µg/L)

Case	#:	Sampling Date(s):	

Site Name:

To calculate sample quantitation limit: (QL * Dilution Factor)

				- 10		· ·												=
Sample NO. Delumin Focan Locanin				∦		∦		∦										_
Delunin Focky				∦		∦												_
Location		_#			·	∦		#										_
		- 1		j		Î		H				- 1	ł				ł	
	ļ	H	•	. (i i				I		·						
		- 1		1		l				ļ	•	Ī		1	,	•	l	
	ŀ			1		- 1		1						1		- 1		
Par Compound	<u></u>	{}-		 						{					}			T
10 NETHYL NETHACRYLATE	 	∦-									 	_	 		 			t
5 1,2,3 - TRICHLORO PROPINE	 	—∦															<u> </u>	t
MOOD METHACRYLONITKILE	.	#									 - 				 			t
100 PROPANENITRILE	 	∦															 	十
10 TRICHLOROFLUOROMETHANE	 	#											-					十
		#														-	 	十
		∦															 	†
		∦																十
	 																 	十
								—	ļ				<u> </u>		 			+
													<u> </u>	 		 	 	十
	l	#											<u> </u>			├─	 	+
								-					H	├	<u> </u>	 	ļ	十
	<u> </u>	1												├	ļ	-		+
													 		 		 	+
											 		!	 	 	├ ──	 	╁
										 			 			├	 	+
														<u> </u>	 -	 	 	+
	1									<u> </u>			· ·	_	<u></u>		#	4
											<u> </u>		L	1	↓	<u> </u>	↓	4
	 												<u></u>		!	<u> </u>		4
	 														<u> </u>	L_	↓	4
	 																	1
	 			\vdash	 				i		1							

PQL = Quantitation Limit

PRACTICAL

Q - data validation qualitus

BEE NARRATIVE FOR CODE DEPINITIONS revised 07/90

10

				-
Page	0	f		

DATA SUMMARY FORM: VOLATILES

Appe	ndix IX
BOIL	SAMPLES
(µg	g/Kg)

.50 #1	Sampling	Date(s):	

To calculate sample quantitation limit: (CRQL * Dilution Factor) / ((100 - % moisture)/100)

				,										<u></u>					
	Sample No.													ļ					
	Dilution Factor	ļ				ļ						<u> </u>				ļ			
	X Noisture																	<u> </u>	_
	Location																		_
	•			-							1							İ	.
					•	1				}									ı
Pal					i												. ′		- 1
-GROT	COMPOUND	conc.	a	conc.	a	conc.	a	conc.	a	conc.	<u>و</u>	conc.	a	conc.	<u>a</u>	conc.	a	conc.	<u>a</u>
Sports.	Chloromethane																		
20010	Bromomethane																		H
20028	Vinyl Chloride	ļ	<u> </u>				_												-1
20018	Chloroethane		Ŀ		\sqcup			ļ											-
2005	Methylene Chloride																		
2000 18	Acetone																		Ш
100 8	Carbon Disulfide				 	ļ												 	Ш
1008	1,1-Dichloroethene																	ļ	Ш
1008	1,1-Dichloroethane													ļ					Ш
100,8	Intel 1,2-Dichloroethene																		Ш
1005	Chloroform																ļ		Ш
100,8	1,2-Dichloroethane																_		Ш
200018	2-Butanone (MEK)																1		Ш
100 8	1,1,1-Trichloroethane																		Ш
100%	Carbon Tetrachloride	<u> </u>															_		Ш
10010	Vinyl Acetate					<u> </u>													Ш
1008	Bromodichloromethane																		
1500	ACROLEIN																		Ш
1000	ACRYLONITRILE																		Ш
400	ACETONITRILE																		Ш
100	3-CHLOROPROPENE																		Ш
500	2 -CHLORO - 1,3-BUTADIENE																		
10,000																			Ш
	DICHLOROFLUOROMETHANE																		

3QL = Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS

Q = dara validarin qualities

Prepared ho: JPL/Wardened-10.

Pal = Procencal Quantitation Limit (wet-weight basis): samples results on a dry weight basis will yield higher Pal (retes to calculation: top right)

_	_	_
Page	 Qf.	7

Appendix IX

Site Name: _		SÓIL SAMP (µg/Kg)	LES
Case #:	Sampling Date(s):	•	•

To calculate sample quantitation limit: (CRQL * Dilution Factor) / ((100 - * moisture)/100)

												,					<u>-</u>		-
	Combo No																		
	Sample No. Dilution Factor																		
	The state of the s																		_
	Location																		
	200011011																1		ŀ
[1										1				•		
_	1		Ì			i	i		- 1							,	,`		
Pal	COMPOUND	cone.	a	canc.	a	conc.	a	conc.	a	conc.	a	conc.	0	conc.	a	conc	ه	conc.	<u></u>
1005	1.2-Dichloropropane						\Box						_						\vdash
1005	Cis-1,3-Dichloropropene															ļ			\vdash
100 8	Trichloroethene						 								\vdash		$\vdash\vdash$		Н
1005	Dibromochloromethane									ļ							-		H
1008	1.1.2-Trichloroethane	<u> </u>												ļ			\vdash		Н
1008	Benzene						<u> </u>										├─┤		┟╼┥
1008	Trans-1,3-Dichloropropene		1												_	ļ			Н
100 B	Bromoform (TRIBRONO METWANE)		1				<u> </u>												Н
1000 HT	4-Methyl-2-pentanone		<u> </u>																$\vdash\vdash\vdash$
100018	2-Hexanone				L											<u> </u>			\vdash
100 5	Tetrachloroethene		 		 	 							<u></u>		 			 	H
1008	1,1,2,2,-Tetrachloroethane		<u> </u>	<u> </u>		ļ					<u> </u>			 			-		╁┤
100 %	Toluene		1	ļ	<u> </u>	<u> </u>	<u> </u>				ļ				-				╁╌┤
1005	Chlorobenzene													ļ		 	 		╁╌┥
1008	E thy i benzene		<u> </u>	<u> </u>		<u> </u>							_		}	 	 		\vdash
100 5	Styrene		1				ļ		<u> </u>						 	 			Н
1005	Total Xylenes					 	<u> </u>						ļ.—		 -	 	 		╂─┤
II	TRANS-1,2-DICHLOROETHENE			<u> </u>			<u> </u>		<u> </u>	ļ	<u> </u>				├	ļ		 	\vdash
200				1	_				<u></u>		<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	ļ	 		—	 	╂╼┤
	TRANS-1,4-DICHLORO-2-BUTENE				l				<u> </u>				<u> </u>	ļ		 	├ ─		┦
	1,2 - DIBROHO - 3-CNLOROPROPANE										<u> </u>	ļ	L		 	 	├ ─		╂╼┤
	ETHYL NETHACRYLATE								I				 	 	ļ	 	├		╁┤
100	IDONETHANE							<u></u>	<u> </u>	<u> </u>		 	<u> </u>	 	↓	∦ _	├ —	ļ	╁╌
10,000			T	I				11		IL	<u></u>	J <u></u>	<u> </u>	<u> </u>		J	<u>L</u>	<u> </u>	<u></u>

CRQL = Contract Required Quantitation_Limit

Pal = Practical avantitation climit (wet-weight basis): sample results on a dry weight basis will yield a higher Pal (refer to calaribasis: top right) Q = Data Validamin Qualitai

	_	
Page	of	_

VOLATILE

DATA SUMMARY FORM: ORGANICS 3

Apperdix IX BOIL SAMPLES (µg/Kg)

ite	Namet			BOIL (µ
8.50	#1	Sampling Date(s):	•	

To calculate sample quantitation limit:
(QL * Dilution Factor) / ((100 - % moisture)/100)

	Sample No. Dilution Factor % Moisture Location																		
	COMPOUND	4000	a	cenc.	a	cent.	a	conc.	a	conc.	a	cone.	a	conc.	a	Conc	<u>'</u>	conc.	a
POL	METHYL NETHACKYLATE																		Ш
100																			\sqcup
	METHACRYLONITRILE																		┦
2,000									·										} -
	TRICHLOROFLUOROMETHANE																		╁╼╣
200	, NECHEURY, EUROPE IN																!		╁╌┦
																			╂╌╢
																<u> </u>			╂╌╢
																			╁┷┤
																ļ			╃╾┦
											 -						 		╂╾┦
					ļ		_				<u> </u>	ļ	 				-	 	┿┵┥
												ļ		<u> </u>	-	 _	├		+
			<u> </u>						ļ				├ ──				┼		╁┵
								ļ	 			 	├	<u> </u>		<u> </u>	╀		+
									ļ			 	├	 -	├		┼		+
					<u> </u>				 		 	 	 	<u> </u>	├	 	┼──		+-
									-		 		├-	 	-	 	+-	<u> </u>	╁┤
-					<u> </u>		<u> </u>		↓		!		├	₩	├		+-	 	╁╌
							L		 		↓	 	-	 	├	 -	╫╌	 	╅┈
					<u> </u>	 	<u> </u>		↓		 	 	₩	 	├		+	H	+
				<u> </u>		 	ļ		↓		├	 	 	<u> </u>		₩	+	#	+-
					<u> </u>				↓	 	-		} —-	<u> </u>	 	 -	+	 	+
-					1	H	<u> </u>	JL		}L	<u> </u>	<u> </u>	<u></u>	<u> </u>	1	<u> </u>		<u> </u>	_

PQL = Quantitation Limit
PRACTICAL

Q = dara validanin qualitiei

SEE NARRATIVE FOR CODE DEFINITION: revised 97/90

70

		-	
Page	of	_	

DATA SIMMARY	' FORM!	BNI	A 16

Site	Name:		WATER SAMPLES
			(µg/L)
Case	#:	Sampling Date(s):	

To calculate sample quantitation limit: (CRQL * Dilution Factor)
PQL

	Sample No.																		
	Dilution Factor Location																		
					•													<u>.</u>	
				·								ŀ							
Pal								1								,			
CROL	COMPOUND	conc.	a	cono.	a	cone.	\boldsymbol{a}	cone.	a	cone.	a	cone.	a	cone.	Q	conc.	a	conc.	a
10	Phenoi																		I
10	bis(2-Chloroethyl)ether	ļ				 				ļ			L		ļ		 	ļ	4_
10	2-Chiorophenol		<u> </u>		<u> </u>	1					<u> </u>		<u> </u>		<u> </u>		ļ		4_
10	*1,3-Dichtorobenzene	<u> </u>			1						ļ						-	·	4
10	*1,4-Dichlorobenzene	<u> </u>	<u> </u>		<u> </u>	 							1		_		↓		┦
10	Benzyl Alcohol				<u> </u>	!			ļ				L				 		┦—
10	1,2-Dichlorobenzene	<u> </u>	1		<u> </u>	1							<u> </u>				1		ᆚ_
10	2-Methylphenol (0-cusel)	1	<u> </u>		<u> </u>		<u></u>				1		<u> </u>				 	<u> </u>	4_
10	bis(2-Chloroisopropyl)ether			<u> </u>	<u> </u>	<u></u>									ļ	<u> </u>	↓	 	4_
10	4-Methylphenol (p-creool)	1					1		<u></u>		<u> </u>				ļ		ļ	<u> </u>	4_
10	N-Nitroso-di-n-propylamine	1			<u> </u>	<u> </u>			<u> </u>		ļ		ļ			ļ	 		4
10	Hexachloroethane		1		<u> </u>	<u> </u>				<u> </u>					<u> </u>		ļ	ļ	1_
10	Nitrobenzene								1		<u> </u>		<u> </u>				_	<u> </u>	_
10	Isophorone		1	<u> </u>	<u> </u>								<u> </u>		<u> </u>		<u> </u>	 	丄
10	2-Nitrophenol	1														<u></u>	1	 	
10	2,4-Dimethylphenol												<u> </u>		<u> </u>		1	<u> </u>	1_
-50	Benzoic Acid												<u> </u>				<u> </u>	!	Ц.,
10	bis(2-Chloroethoxy)methane			,			<u> </u>	·					<u> </u>			<u></u>		 	4
10	2_4-Dichlorophenol					}											1		┷
10	1.2.4-Trichtorobenzene																	<u> </u>	1
10	Naphthalene															· · · · · · · · · · · · · · · · · · ·	1		丄
10	4-Chlorosniline																1		1
10	ACE TOPHENONE																	<u> </u>	丄
50	ANILINE			1									I			R	ı	H	

CRQL = Contract Required Quantitation Limit
Pal PRACTICAL

Action Level Exists

SEE NARRATIVE FOR CODE DEFINITIONS revised 07790

Prepared by: phn Lorenzo (wcc)

a = Dara Validarion Qualitici

Pag	10	of	

DATE	SUMMARY	FORM:	R 1	R	. 4*	2
DATA	DUMMARI	romi				-

3ite Name:		•	WATER SAMPLES $(\mu g/L)$
Caso #1	Sampling Date(s):	•	

To calculate sample quantitation limit: (CRQL * Dilution Factor) PaL

	Sample No. Dilution Factor Location																		
	<u></u>																		
Pa L CROL	COMPOUND	cone.	a	conc.	a	conc.	a.	Conc.	a	Conc.	Q	Cone.	a	cone.	a	cone.	a	conc.	ھ_
10	Hexach Lorobut ad i ene														ļ	<u> </u>			┵┦
10	4-Chloro-3-methylphenol													ļ	<u> </u>				┵┤
10	2-Methylnaphthalene																	 	╂┦
10	Hexachlorocyclopentadiene														ļ		↓ —		╃╌┦
10	2,4,6-Trichlorophenol					<u> </u>											ļ	ļ	┿┩
50	2,4,5-Trichlorophenol													ļ			↓		4-4
10	2-Chloronaphthalene															ļ	↓	ļ	4
50	2-Nitroaniline					,									ļ		↓		+
10	Dimethylphthalate						L								1	<u> </u>	↓		4-1
10	Acenaphthylene														ļ	ļ		 	44
10	2,6-Dinitrotoluene														↓		↓	 	4-4
50	3-Nitroaniline											<u> </u>			 	 	↓	∥	┵┙
10	Acenaphthene	1													<u> </u>	ļ	↓	<u> </u>	-∤
50	2,4-Dinitrophenol														↓		ļ	!	┵┵
50	4-Nitrophenol	1	1												ļ		↓	 	4-4
10	Dibenzofuren													·	<u> </u>		 	 	4-4
10	2,4-Dinitrotoluene																╀		44
10	Diethylphthalate																1_	ļ	4
10	4-Chiorophenyl-phenylether	1	1						П							<u> </u>		↓	4
10	Fluorene	1	 				1		1							<u> </u>	1	<u></u>	4_'
50	4-Nitroaniline	 	1-		1	<u> </u>	1									·			\bot
50	4,6-Dinitro-2-methylphenol	#	+-	 	 		1		1										
1)		 	+	 	t	#	+	 				i	Г						
50	4 - AMINOBIPHENYL	₩	╁─	 	┼	 	+	#	 	H	1	 		1					

CRQL = Contract Required Quantitation Limit

PRACTICAL

Q = Dara Validanin Qualitici

BEE NARRATIVE FOR CODE DEPINITIONS

Prepared by: John Lovengo (wee)

		_
	-4	
Page	ΟĪ	

DATA SUMMARY FORM: B N A S

ite	Name:			WATER SAMPLES $(\mu g/L)$
•	#.	Sampling Date(E):	•	

To calculate sample quantitation limit: (CRQL * Dilution Factor)

								_ 	1		<u>_</u> _								
]	Sample No.			<u> </u>															
	Dilution factor						_				$\neg \neg$		_						
·	Location					 													\neg
li						1	1						,		1		i		
ļļ.				·						1					ı	·	·]
	-						1				1				- 1		,		Į.
Pal		.								conc.	0	come	ا ۾	Cem C.	a 1	conc	a	conc.	a
CROL	COMPOUND	conc.	<u>a</u>	conc.	<u>() </u>	conc.	_ <u>(42</u>)	Conc.	<u> </u>	Carne.		<i>Carrer</i>		<u> </u>					\Box
10	N-Nitrosodiphenylamine		├				-		1	 									
10	4-Bromophenyl-phenylether		 		 -	 	1-1		-						1				\Box
10	*Hexachlorobenzene		1.		├		-		1-		\vdash								+
50	*Pentachlorophenol				 		┼		{		╁─┤								\top
10	Phenanthrene			<u> </u>			+	 	╂										1
10	Anthracene	ļ			-				╁——										\top
10	Di-n-butylphthalate	ļ			 	ļ	 		 										\top
10	Fluoranthene	ļ	ļ	ļ	∤ -		├ ──	<u> </u>	 						\vdash				17
10	Pyrene	 	-		↓ -	<u></u>	 	 -	┼	<u> </u>	├──		_		-		1		+
10	Butylbenzylphthalate		-	ļ	├ ─	 	}	 	┼—	 	-	 	-		╁╼╌		 		+
20	3,3'-Dichlorobenzidine				├ ─	<u> </u>	 	<u> </u>	 	<u> </u>	 		_		╂╌╌	 	 		11
10	Benzo(a)anthracene	<u> </u>			 	 	↓	 		<u> </u>	├				 		 	 	+-1
10	Chrysene	<u> </u>	<u> </u>	ļ	↓	 	-	 	 	 	├	ļ	 		┼─	 	┼		+
10	bis(2-Ethylhexyl)phthalate		<u> </u>	<u> </u>	↓		<u> </u>	 	-	 					┼	 	+	 	+
10	Di-n-octylphthalate			<u></u>	<u> </u>	 	4		↓	}	 		├	 	├ ─	}	+		
10	Benzo(b)fluoranthene		1		<u> </u>	 	↓	 	4	 	 	ļ		 	┼─	 -	 		+-1
10	Benzo(k)fluroanthene					1	↓		 	↓	├		 	 	┼		╂	 	
10	Benzo(a)pyrene				1_				_	 	-	 	 	 	├ ─	 	+-	 	+-
10	Indeno(1,2,3-cd)pyrene						1		4		↓	 	↓	<u> </u>	┿	 	+	 	╂┦
10	Dibenz(a,h)anthracene										↓	 	↓	 		 	╁	 	+-
10	Benzo(g,h,i)perylene						1		1	ļ	_	<u> </u>	├	 	↓—	 	┼	 	+
100	ARAMITE							<u> </u>	1		↓	 	 	 	┼	₩	+	 	+-
10	CHLOROBENZILATE							ļ	 	ļ	₩	 	 		 	₩	+	 	+-
	DINETHYLPHENETHYLAMME]	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	J	JL	<u>ــــــــــــــــــــــــــــــــــــ</u>	<u> </u>	

CRQL = Contract Required, Quantitation Limit
Pal Piocneil

'Action Level Exists

SEE NARRATIVE FOR CODE DEFINITIONS revised 07/90

a = Dara Validamin Qualities

Prepared by John Lovenyo (wec)

	1001	20	
10	of	-	

BNA

DATA SUMMARY FORM:

Site	Name:		WATER SAMPLES $(\mu g/L)$	
	#.	Sempling Date(s):	•	

To calculate sample quantitation limit: (QL * Dilution Pactor)

1	·			 i						1		7						
Sample No.		∦										1						
Dilu rom Facen					 													
Location					 					-+								
		ļ						ŀ				i						
	•	ĺ	•	,			l	ľ				į		i				
		ŀ					1								,			
·		,	l.	_				ام	conc.		2000	0	cmc.	2	come.	a	corc.	a
	Conc.	a	conc	<u>a</u>	Corc.	<u>a</u>	conc.	<u>-62</u>	Conc.		COTIC							\Box
10 2.6-DICHLOROPHENOL		 				├	 							\vdash				
10 13 - DINITROBENZENE					 			╁─┤										\Box
10 DIPHENYLAMINE				 	 	╂	 	╂╼╾┤		├─┤								\Box
30 P-DIMETHYLAMINDAZOBENZENE				ļ	<u> </u>	┼	ļ	-		\vdash								
80 3,3'-DINETHYLBENZIQINE					 		ļ.———	1										\square
50 7,12-DINETHYLBENZIA)ANTHRACENE		 		 	 	 		┝╾┤	 	-								
10 DIALLATE				 -	 	+	 	╁──										
10 ETHYL NETHANESULFONATE		-	ļ	├	 	┼──		 										
50 MEXACHLOROROPENE		-	ļ		₩	╂	 -	╅──		1		•						
50 HEXACHLOROPHENE		├		-	∦	+-	 	 										
10 ISOSAFROLE		 		├	 	╁		+-		_		1						
50 HETHYL NETHANESULFOMATE		-		╂	 	+	 	+-	 	1								1_
10 3-METHYLPHENOL(M-CRESOL)		┼—		┿	 	 	 	+-	 	t								丄
40 HETHAPYRILINE		+		┼	 	╁	 	 	 	 								丄
30 3-METHYLCHOLANTHRENE		┼		┼	}	┪	₩	╁	#	<u> </u>						<u> </u>		╄
10 N-NITROSODINETHYLANINE	 	-	 	┼	 	+-	╫┈──	1	#									1
10 N-NITROSONETHYLETHILA MINE		-	 	╂──	 	╁─╴	 	_	†		 							1
10 N-NITROSODIETHYLANINE		╂	 	╫	 	+	 	+		1		T			· · · · ·			丰
10 N-NITROSOPYRROLIDINE		┼—	 	 	₩	+-	#	1-	 	1	1						<u> </u>	丄
10 N-NITROSOMORPHOLINE		╂	 	╂━	₩	1	 	1-		T	1						<u></u>	4
10 N-NITROSOPIPERIOINE			 	-	 	+-	 	+-	 	1	 	1						丄
20 N-NITROSO-DI-N-BUTLYLAMINE	ļ	 	 	╁	 		╫	+	 	1								1
10 1,4 -NAPTHOQUINONE		╂	 	╂—	 	╁	 	+-	-	1							<u> </u>	<u>_L</u>

QL = Quantitation Limit

Q = Dara Validanon Qualifier

revised 07/90

10

revised 07/90

10

ite N																			
	Ame:	<u> </u>					WAT	ER Sam P (µg/l)								.*			
150 f	Sampling Date	(5):				•		() 37 - 7				_		• •					_1.
		·										TO . (CTIC	MINEO E	()	e quant	luti	on Pact	tor
	Sample Number																		
	Dilumon Foctor															ļ			
	docarion													 		 		 	
		ļ	1		• 1	ļ								i	-	ı		ĺ	
					,									ll .			·	A	
			l					ļ						H		,	,•·	1	
Pal	Compound	conc.	a	coma.	a	conc.	a	canc.	a	conc.	a	conc.	Q	conc.	a	conc.	a	conc.	a
660		Conc.		Corre.	T								T						Τ
	5-NITRO -O -TOLUIDINE																		╀
	4-NITRO QUINOLINE-N-OXIDE												<u> </u>				<u> </u>	 	4
660											ļ		ļ			↓		 	+
	2-PICOLINE						<u> </u>		<u> </u>			ļ	ļ	 	—	 	↓	 	+-
	PENTACHLOROETHANE				ļ		<u> </u>	ļ	ļ		 		 	<u> </u>	 	₩	┼	 	╁
660	PENTACHLURO BENZENE		1				-	 	 -		┼		 	₩	╃		┼	 	┿
	PHENACETIN		1		ļ			1	┼—-		₩	 	 	 	+	 	┼──	 	┿
660	PENTACHLORONITROSENZENE		\perp		 	<u> </u>	↓ _	 			 -	ļ	╫			 	+	-	┿
	PRONANIOE		1		 		┿	 	-		┼─	 	 	╂	┽┷	 	+	 	┿
1700	P-PHENYLENE OTANINE	 	1	ļ	ļ		┼	 	┼		 	 	╂	 	+	 	┼──	 	十
	SAFROLE	 	-		 	}	┼	₩	-	ļ	+	 	╂	╫	+	₩	╂╼┯	 	┿
	0-TOLUIDINE		 		├ ─	} -	-		┼		┼		┼─	 	+	 	┼─	 	┿
	1,2,4,5-TETRACHLOROBENZENE	¥	-		 	 	┼	 		}	+	₩	╁╼╌	<u> </u>	╅──	 	┼──	 	+
660	2,3,4,6-TETRACHLOROPAENOL	 	 		┼	 	┼	 	╅	 	┼		+	-	┪	+	+	 	+
	TINUVIN 327		-		 	<u> </u>	+	 	┼─	 	+	 	+	1	+	 	+	†	十
	IRGASAN DP-300	 	↓	 	 	<u> </u>	┼─		 	 	╂	 	+	1	+	#	+	 	十
	PROPAZINE	 		}	 	 	╅—			 	+	 	┼	╂───	 	 	+	#	十
	BUTA ZOLI DIN		↓	 	┪	 	┼	 	+-	 	┿	#	+	 	- 	 	+	1	十
	TOFRANIL	ļ	-	 	↓	 	+	 	┿	 	╁─╌	<u> </u>	+	#	╅╾	#	+	#	十
	DCDD	<u> </u>	4	₩	+		- -	₩	+	 	╅──	 	+	-	 	#	+	†	十
	TRCDO	 	+	 			+-	#	+	 	+	 	╁╌	#	+	#	1	1	十
	DCDF TRCDF	 	╂		+		+	 	+		+	 	+-	#	+-	1	1	1	7

SYN - TRINITROBENZENE WAS ANALYZED AS A TENTATIVELY

I DENTIFIED COMPOUND DUE TO THE UNAVAILABILITY OF

STANDARDS

Q = Data Validapar Qualifai

Page	of	

DATA SUMMARY FORM: B N A S

ite	Name:		SOIL	SAMPLES
			(μς	g/Kg)
1	4.	Compling Date:		

To calculate sample quantitation limit: (CRQL * Dilution Factor) / ((1 - % moisture)/100) PaL

	Sample No. Dilution Factor % Moisture Location																		
Pal	COMPOUND	cme.	a	conc.	a	conc.	a	conc.	a	conc.	a	Conc.	a	Conc.	a	conc.	a	conc.	ھ
330	Phenol																<u> </u>		┦
330	bis(2-Chloroethyl)ether									l							ļ		Н
330	2-Chlorophenol					<u> </u>									ļ		ļ		
330	1,3-Dichlorobenzene		Ċ	L						\						ļ			H
330	1,4-Dichlorobenzene													ļ		ļ			₩
330	Benzyl Alcohol																	ļ	┦
330	1,2-Dichtorobenzene															ļ	! —		11
330	2-Methylphenol (o-cross)					<u> </u>										ļ	 		┦
330	bis(2-Chloroisopropyl)ether																├ ─-		₩
330	4-Methylphenol												\Box				├ —	ļ	┦╢
330	N-Nitroso-di-n-propylamine																 	<u> </u>	┦
330	Nexach Loroethane						<u> </u>						_			 	 	<u> </u>	\sqcup
330	Nitrobenzene							<u> </u>	<u> </u>						<u> </u>		ļ	 	╀╢
330	Isophorone												L		<u> </u>		 	 	┦╌╢
330	2-Nitrophenol													ļ	<u> </u>	 	 	 	┦
330	2,4-Dimethylphenol												<u> </u>		بنا	ļ	↓		┦╌╢
1600	Benzoic Acid														<u> </u>		ļ	 	╀╢
330	bis(2-Chloroethoxy)methene														<u> </u>		 	 	╁╌╢
330	2,4-Dichlorophenol												L		<u> </u>	 _	↓	 	╁┷╢
330	1,2,4-Trichtorobenzene	<u> </u>													<u> </u>		<u> </u>	 	╁┷╢
330	Naphthalene																 		╨
330	4-Chloroaniline	1													<u> </u>		1_		╁╌╢
330	ACETOPHENONE	1	1												<u> </u>	<u> </u>	 	↓	↓
1700		11	1		1		П								<u> </u>	<u> </u>	<u></u>	<u></u>	لبل

CRQL = Contract Required Quantitation Limit

PaL Pracrical SEE NARRATIVE FOR CODE DEFINITIONS

Prepared by: John Loungo (wec)

_	_	
Page	of	

DATA SUMMARY FORM: B N A S

Site Name:			SOIL SAMPLES $(\mu g/Kg)$	
Case #:	Sampling Date(s):	•		

To calculate sample quantitation limit: (CRQL * Dilution Factor) / ((100 - % moisture)/100)

									7										
ļ .	Sample No.								-										
	Dilution Factor													,					
1	% Moisture			 															
H	Location		<u>-</u> -																
<u> </u>			- 1				Ì		1		1	į	ı	·			•		
			- 1					.				ļ		1			, .	A	
FRIL	COMPOUND	conc.	a	Conc.	a	conc.	a	cone.	a	conc.	0	conc.	a	conc.	a	cënc.	a	conc.	<u>_Q</u>
330	Hexachlorobutadiene								1		\vdash					 	├	 	+
330	4-Chloro-3-methylphenol						ļ		1			ļ						 	+
330	2-Methylnaphthalene								 			ļ ———				 	╁─╴	 	+
330	Hexachi orocycl opentadiene						 		├ ─			ļ			 		1-	 	╅┥
330	2,4,6-Trichlorophenol		<u> </u>				 	 				 		 	-		┼	 	╅┦
1/007	2,4,5-Trichlorophenol		L						 	ļ					 		 		+
330	2-Chloronaphthalene			ļ			ļ		 						├	ļ	┼─	 	-
1600	2-Nitroaniline		ļ	I	ļ					ļ					├──	 	+-	 	+-
330	Dimethylphthalate		<u> </u>				↓				-	 -			┼─	<u> </u>	╁	 	+-
330	Acenephthylene		ļ	 	L		—	<u> </u>	-		 		-	 	┼	ļ	╫	╂───	+-
330	2,6-Dinitrotoluene		<u> </u>		 		↓	<u> </u>	 	ļ	} '	<u> </u>	 		╁─		╁╌╴	 	+
12007	3-Nitroeniline		<u> </u>				 		-		├ ──	<u> </u>	╂	ļ	┼	H	╅	 	+-
330	Acenaphthene				!		↓ —	 	├ ─	 	├ ─	 	├	 -	┼	 	+-	 	+
16007	2,4-Dinitrophenol		<u> </u>	!			 	 	↓		 	₩	├──	 	┼──	 	+-	╂───	+
16007	4-Nitrophenol					 	 	 	├ ──	ļ	┼	₩	├ ─	 	╂──	 	+-	∦ -	-
330	Dibenzofuran				<u> </u>	 	↓	 	↓	 -	├ ──	₩	-	 	 		╂─	 	_
330	2.4-Dinitrotoluene	<u> </u>	1		ļ		 	∦	 	 	 	∦	├	 	+	 	+	 	+-
330	Diethylphthalate				 		 	 	 	 	├ ─	₩	 	 	┼	₩	╂	#	+
330	A-Chiorophenyl-phenylether				<u> </u>		 	 	↓	#	-	 		 	┼──	 	+-	#	+
330	fluorene				<u> </u>		 _	 	₩-	 		ļ	↓ —	 	┼	∥ −	+	+	+-
1,500	4-Nitroaniline				_	 	1	 	 	}		 	╂—	₩	┼─	 - ·	+-	+	
15007	4,6-Dinitro-Zmethylphenol						1_	ļ	 	↓	↓			 	+	 	+-	 	
1700	4-AMINOBIPHENYL					<u> </u>				!	↓	 	 	#	+	 	╂	 	+
1700		1				1	l	11	1	ll		11	1	II		الـ		JL	

CRQL = Contract Required Quantitation Limit

Pal = Practical Quantitation Limit

Q = Dara Validanin Qualitai

SEE NARRATIVE FOR CODE DEFINITIONS
revised 207/90
10
Prepared by: John Soveryo (ucc)

			-
Page	•	of	

DATA SUMMARY FORM: B N A S.

Site	Name :			SOIL SAMPLES $(\mu g/Kg)$
Casa	#.	Sampling Date(s):	•	

To calculate sample quantitation limit: (CRQL * Dilution Factor) / ((100 - % moisture)/100) Pal

										•				*****					
	Sample No.					,												 	
	Dilution Factor																		
	% Moisture																	 	
	Location			<u> </u>															
						i												A	
							i					į		,				il .	
Pal		1 ·									_		_		_		_	1 .	_
_CROL	COMPOUND	conc.	Q	cons.	a	conc.	<u>a</u>	cone.	<u>a</u>	conc.	a	conc.	a	conc.	<u> </u>	concu	<u></u>	conc.	半
330	N-Nitrosodiphenylamine]	<u> </u>		<u> </u>	 	 .		-								 	 	╁╴
330	4-Bromophenyl-phenylether				<u> </u>	ļ					 				 	 		 	╀
330	Hexach Lorobenzene	ļ	<u> </u>		<u> </u>	 	 	ļ — —			 		 		 		 	 	┿
1/007	Pentachlorophenol	ļ	1		<u> </u>	 	 	ļ			ļ				 		╌	 	十
330	Phenanthrene	<u> </u>		ļ	1_	 	 	 		 	-				 		 -	 	╁
330	Anthracene	<u> </u>	↓	ļ	1	 	-	 		ļ	ļ	ļ		ļ	 		┼	 	╂╌
330	Di-n-butylphthalate		1	ļ		 	 	 			├ ─-	 			-	 	┿	₩	╁
330	Fluoranthene	<u> </u>		<u></u>	_	!	 	∦	 		 				┼			 	╁
330	Pyrene	<u> </u>	 			!	}	 	 			<u> </u>	-	ļ	┼		╁─	₩	╬
330	Butylbenzylphthalate		 	 	 	↓	↓	 	 			<u> </u>	-		 		├ -	 	╁
660	3,31-Dichlorobenzidine	<u> </u>	 	<u> </u>	↓		ļ	↓	 	∦ -	 	ļ	├		 -	 	┼	 	╬
330	Benzo(a)anthracene	<u> </u>	<u> </u>	<u> </u>	<u> </u>		 	#	 	 	↓		 	 	├ ─	#	↓	 	╁
330	Chrysene		<u> </u>		ļ		↓	 	ļ	 	ـــ	<u> </u>	 -	<u> </u>	↓	!	┼—	 	┿
330	bis(2-Ethylhexyl)phthelate		<u> </u>	<u> </u>	<u> </u>		↓			}	↓	!	ļ	ļ	┼	 	╂	 	╁
330	Di-n-octylphthalate					 	<u> </u>		<u> </u>	 	 	 	<u> </u>		-	 	┼	₩	╬
330	Benzo(b)fluoranthene			<u> </u>	<u> </u>	 	 	<u></u>	<u> </u>	 	 	ļ	<u> </u>	 	 	 	-		╬
330	Benzo(k)fluoranthene						 	<u> </u>	<u> </u>		 	 	├ ─	 	╄		↓ —	₩	╀
330	Benzo(a)pyrene				<u> </u>				<u> </u>				<u> </u>		 	 	┼—	 	╬
330	Indeno(1,2,3-cd)pyrene								<u> </u>		 	ļ	 	 	 	 	 		+
330	Dibenz(a,h)anthracene									<u></u>	 		<u> </u>		 	 	↓	 	+
330	Benzo(g,h)perylene										<u> </u>		1	 			 		+
3000	ARAMITE										ļ	<u></u>	1	 	↓	₩	↓_		+-
330	CHLOROBENZILATE										1		 	1	↓	 	↓		4-
	OTHETHYL PHENETHY AMINE		1	11	1	1	1		I	R	1	I	I	#	I	li	1	ـــــالـ	1.

CRQL = Contract Required Quantitation Limit

Pal = Practical Quantitation Simit

Q = Dara Validanin Qualifier

SEE NARRATIVE POR CODE DEFINITIONS revised .07/90

Prepared by: John forenyo (wcc)

				BI	V	4					
 CIMMARY	PORM:	0	R	G	A	N	I	C	8	4	ĺ

Site	Name:			SOIL SAMPLES (µg/Kg)
Case	#1	Sampling Date(s):	•	

To calculate sample quantitation limit:
(QL * Dilution Factor) / ((100 - % moisture)/100)

									, 7									
						 _			***************************************	1		Ī						
Somple Number Delinon For so						∦		 										_
Deliver Factor																		
docanon																		
% moisture																		
		1		.		l		I		l l		1						
										- 1		l		l	. /			
			a ama	0	cane.	a	conc.	a	cone,	a	conc.	a	conc.	a	cone.	<u>e</u>	como.	2
	Corc.		Conc.												 	┝┈┤		Ͱ
330 2,6 - DICHLOROPHENOL		 - 		1										├		┟─┤	 	┢
330 13- DINITROBENZENE	 	╂╼═┤		1										 		 	 	╁╌
330 DIPHENYLANINE	 	-		 										 		╀─┤		╁
1000 P-DIMETHIZANIMO AZOBENZENE		╅═┪		1										1	 	├		┢
2700 3,3'-DINETHYLBENZIOINE		1	 	1		1								 	 	 		╀
1700 7.12-DINETHILBENZ/A) ANTHRACENE		 		1-									ļ	 	ļ	-	 	十
330 DIALLATE		 		+-								_		↓	ļ		 	╁╴
330 ETHYL METHANESUL FONATE		+		1		1						 		—	ļ	╁	╫┈┈┶┈	╁
1700 HEXACHLOROPROPENE	 	+		1								 		├ ─	 	+	 	╁
1100 HEXACHLOROPHENE		+	 	1						 		 	 	┼	 	+-	 	╁
330 ISOSAFROLE	 	+	 	1	1								 	 	 	┼─	₩	十
1700 NETHYL NETHANESULFONATE	 	+	 	1-	1						 		 	-	 	+		╁
330 3-METHYL PHENOL (N-CRESOL)	₩	+	#	1	 	1					<u> </u>	 	 	 	 	+	#	╁
300 NETHAPYRILINE	 	┪━	╫	1	11	1	1						 	 	 	╁	 	+
1000 3-METHYL CHOLANTARENE	₩	+-	₩	1-	 	1					<u> </u>		 	 	 	+		╁
330 N-NITROSODINETHYLAMINE	 	+	 	 	#	1					<u> </u>	1		 	 	┼─	 	╁╴
330 N-NITEWONETHYLETHYLAMINE		╂	 		 	+	1	1			<u> </u>	1		┦	 	╁—	 	╁
330 N-NITROSODIETHYLANINE	 	┼─	 	┪	 	1-		1					<u> </u>	4-	 	 	#	╀
330 N-NITROSOPYRROLIDINE	 		₩	1-	╫	1	1							4_	 		 	╁
330 N-NITROSONORPHOLINE	 	┥	₩	+-	1	+		1-					<u></u>	4	∦	-}	 	╁
330 N-NITROSOPIPERIONE	₩	┥—	#			+-		1								┼—	#	╁
660 N-NITROSO-DE-N-BUTLYLAMINE	#	┽—	#		#	+	#	1					<u> </u>		 	╂—	 	╫
330 1,4-NAPHOQUINONE		+	#	+-	 	+-		1					<u></u>		<u> </u>		<u></u>	4
660 1-NAPHTHYLANINE			ال		ال							0	RK NARR	ATIV	E POR C	DE	Definit	IO

PQL = Quantitation Limit

a = Dara Validanon Qualifici

SEE HARRATIVE FOR CODE DEFINITION

revised 97/5

Page of

BNA DATA SUMMARY FORM:

Site Name:	SOIL SAMPLES (µg/Kg)	
Case #: Sampling Date(s):	•	To calculate sample quantitation limit: (QL * Dilution Factor) / ((100 - % moisture)/100)

Sample Number Dilunon Foctor														\dashv				
Dilunon Foctor						 -												_
Locaron					 													_
% Hoisme	 		<u> </u>									-						_
•		1			i			ŀ		. 1								
	<u>]</u> }							į		}				1	,	•		
Car Compound	conc.		came.	a	conc.	a	cene.	a	conc.	a	conc.	<u>a</u>	conc.	a	conc.	a	corc.	<u>.</u>
	CATIC:				<u> </u>													1
20 2-NAPHTHYLAMINE		1		1														╧
20 5-NITRO -O - TOLUIDINE		+		1		1		\Box										\perp
00 4-NITROQUINOLINE-N-OXOC				1		1												1
10 PYRIDINE	 	 	 	┼				1										1
10 2-PICOLINE	 	+	 	+		1												┙
20 PENTACHLOROETHANE	#	┼	<u> </u>	+-		1		1									<u> </u>	┙
O PENTACHLOROBENZENE	 	+-		1		1-												1
O PHENACETIN	 	+	 	1	1	†												┙
20 PENTACHLORONITROBENZENE	#	+	 	+	-	_		1										┙
30 PRONAMIDE	 	+-		+-		+		1								1		┙
50 P-PHENYLENEDIANINE	-	┽──	 	+		+		T				1						╛
10 SAFROLE	-	+	 	+	 	1		1										
O O-TOLUIDINE	1	+		╅──	-	+	 	1										
10 1,2,4,5- TETRACHLOROBENZENE		+	 	+	1	1-		1										╛
20 2,3,4,6-TETRACHLOROPHENOL		+	 	+	 	1-	 	+		1		1		1				
TINUVIN 327		+	 	+	 	+-	 	+	1	1								
IR GASAN OP-300	- 		 	+	 	+	 	+	 	+	#		1	1				\Box
PROPAZINE	 	┥	 	+	 	+	<u> </u>	╅──	╫───	+	1	1	1	1				
BUTAZOLIOIN		┥	 	+	₩	+		+	 	+	#	1-						
TOFRANIL	 	+	₩	+-	 		 	+-	 		1	1-	-	1	1	1		
0000		4	₩				╫	+	-	+	 	1		1	1			
TRCOD	.	-	 	┿┈	#		 	+	 	+	-	+	1	1-	1			_
DCOF			 	-}		╂—	#	╅╾	 	+	1	+	1	1	 	1		_
TROP SYN-TAINITROSENZENE - Quantitation Limit	ـــــال	يب	ـــــال	يبك	ال	وساد		يبا			<u> </u>	- - -		- J	E POR C	•		=

POL PRACTICAL NOTE: SYM - TRINITRO BENZENE WAS ANALYZED AS A TENTATIVELY IDENTIFIED COMPOUND DUE TO THE UNAVALABILITY OF STANDARDS

10

Pa	ge		of	

DATA SUMMARY FORM: PESTICIDES

DIOXINS / CLASSICAL PARAMETERS

WATER SAMPLES

Site	Name :	
		•
C	4.	Sampling Date(s):

(µg/L)

Caso	#:		Sampling	Date(s):	
------	----	--	----------	----------	--

To calculate sample quantitation limit: (CRQL * Dilution Factor)

															PO	26			—
	Sample No.	1									#								
	Dilution factor															· · · · · · · · · · · · · · · · · · ·			
	Location											i							
													ĺ		ŀ		ľ	l	
		ll .		ł	1		· [- 1		1							l	
		1				_			- 1		ľ			1	ı		l		
Pa L]	1		. 1				1		l							1	
CROL	COMPOUND -	cenc.	a	conc.	a	conc.	a	conc.	α	Conc.	a	conc.	a	conc.	ها	conc.	۳	conc.	f
0.05	elpha-BHC														 		-		十
0.05	beta-BHC										\vdash						┝╼┥		十
0.05	delta-BHC										 				\vdash				十
0.05	*gamma-BHC (Lindane)										 	ļ			-		\vdash	 	十
0.05	*Heptachlor											ļ					\vdash		十
0.05	Aldrin													ļ	-		-		十
0.05	Heptachlor Epoxide				<u> </u>		<u> </u>					<u> </u>	<u> </u>	 			\vdash		†
0.05	Endosulfan I				<u> </u>								-	 			-		十
0.10	Dieldrin													ļ			\vdash		†
0.10	4,4'-DDE				ļ		ļ		 	ļ	-				├─┤	 			十
0.10	*Endrin		1	 	ļ		<u> </u>		 	ļ			├	 	 		-		†
0.10	Endosulfan 11		 	 	 	ļ	ļ		-	ļ	-		-	 	╂──	H	1-		十
0.10	4,41-DDD				—	<u> </u>	 		 						\vdash		1		1
0.10	Endosulfan Sulfate	<u> </u>		<u> </u>	 	↓ :_	↓	 	├	ļ			╁─╴	 	┼──	 	t^-		\top
0.10	4,41-DOT			 	 	 	ļ	.	├	 	-	 	╁┷	 	1	1	 	 	1
0.50	*Methoxychlor		<u> </u>		↓	 		 	├ ─	ļ ———	-	<u> </u>	 	╫	┼──	 		<u> </u>	1
0.10	Endrin Ketone			ļ	 	ļ		 	├—	 	├─	ļ	!		┼─	#	 		†
0.50	*alpha-Chlordane				↓	 	.	 		 	 	 	}		┼──	#	 	1	十
0480	*gamma-Chlordane						↓	∦	↓	 	┼—		├─	 	┼	 	1	 	十
1.0	*Toxaphene		I	<u>li</u>		<u> </u>	 	 	↓ —		↓ -	 	┼─	╫	+	╫───	1		十
0.50	*Aroctor-1016						↓	 	 		 		-	 	 	 	${f +}$	 	十
0.50	*Aroclor-1221				<u> </u>		 	 	↓	 	₩	#	╂─	 	+-	 	\vdash	-	十
0.50	*Aroctor-1232						↓_		—	 	↓—	₩	╁	 	+	 	 	1	十
0.50	*Aroctor-1242				1_		1		 	 	↓	∦	↓ —		┼──	 	┼──	-	十
0.50	*Aroclor-1248					 	1_		↓	 	├	 	╀─	 	╂──	#	 		+
1.0	*Aroclor-1254						<u> </u>		 			 	}	 	╂		╁┈	-	十
1.0	*Aroctor-1260	1		1	1	II	I	1	<u> </u>	ـــــال	1	JL		الــــــــــــــــــــــــــــــــــــ	<u> </u>	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	<u> </u>	

ergi = Contract Required Quantitation Limit
Pal Procrical

Q = Dara Validanoi Qualifier

'Action Level Exists

SEE NARRATIVE FOR CODE DEPINITIONS

ORGANOCHLORINE PESTRIPE /PCB

Page		·f
------	--	----

DATA SUMMARY FORM: ORGANICS 2

Site Name:	water samples	•
	(µg/L)	•
Case #: Sampling Date(s):	•	To calculate sample quantitation limit
Reference		(QL * Dilution Pactor

	Sample No. Diluxin Factor																		
	Location	·																	\Box
.	200,010																- 1		ı
					,		. !		ı						1				H
1			1													,			
POL	Compound	Conc.	a	conc.	a	cone.	a	conc.	a	Conc.	0	Conc.	a	conc.	a	conc.	a	Conc.	a
16	ENDRIN ALDEHYDE																		┦
1600									\Box	ļ							1		┟╌╢
1600	KEPONE																1—1		┟╌╢
0.5	SULFOTEPP																		H
02	PHORATE																	 	╂╾╢
	DIMETHOATE															ļ	-		╂═╢
	DISULFOTON										 			1			-		╂╌╢
	NETHYL PARATHION		L]				 	╁──┤		╂╌╢
	ETHYL PARATHION							ļ						ļ	 	 			H
1.0	FAM PHUR							 	 		-						 		Н
	THIONAZIN								ļ		├			}		 			╁┼
	0,0,0-TRIETHYLPHOSPHORDTHIDATE			ļ <u>.</u>				ļ		ļ					├─	 	 -		╁┼┦
	2,3,7,8-TCOD										 -				-	 		 	╂╌╢
0.01	PCOOs		L			<u> </u>				 				() 	├	∦ -	-	<u> </u>	H
0.01	PCOF.	ļ			<u> </u>				_		 -	 		 		 	-	ļ	H
10	CYANIDE		ļ	 						 	—					 	┼─		H
1000	SULFIDE			<u> </u>				ļ	_					 		 	 	 	H
			ļ	!		 					-			<u> </u>		╫	┼─		╁┼┦
			ļ						<u> </u>			ļ		 	-	 	╂	 	+
			<u> </u>			ļ	 -		ļ		├—		—	<u> </u>		 	+-	 	+
				<u> </u>	<u> </u>	 	ļ		1		 	ļ	<u> </u>	₩	├	 	┼—	 	╁┤
			<u> </u>			 			 		├	<u> </u>	 	H	-	 	┼	 	╆┪
		<u> </u>	<u> </u>	<u></u>		 		 	<u> </u>		ļ			#		#	╂──	∦	╁┤
		II.	1	I	l	ľ.	I '	K	ľ	II	ł	Ħ		II.	l	JI	1	1	<u></u>

PQL = Quantitation Limit
Proceed

Q = Data Validation Qualifier

BEE NARRATIVE FOR CODE DEFINITIONS revised 97/90

11860 PJ / 3

190	420
-----	-----

Site	Name:		SOIL SAMPLES (μg/Kg)
Caso	#:	Sampling Date(s):	

To calculate sample quantitation limit: Pal (CRQL * Dilution Factor) / ((100 - % moisture)/100)

•																			
	Sample No.														∤				
	Dilution Factor			,													∤		
	Location											L							
l	•										ľ		ľ				ı		Į.
]]			- 1						ŀ		Ì		ļ		٠,		Ì
.			- 1								l		1			1	_		
Pa L CROL	COMPOUND	conc.	0	conc.	a	conc.	a	conc.	a	conc.	a	conc.	له	conc.	a	conc.	<u>Q</u>	conc.	4
8	alpha-BHC		igsquare										\vdash				/		1-1
8	beta-BHC	 	1												\vdash				+
8	delta-BHC	1					 					<u></u> -			H		1		1-1
8	gamma-BKC (Lindane)			ļ						ļ							11		1-1
8	Heptachlor	<u> </u>	1				├								$\vdash \vdash$		1		1-1
8	Aldrin				<u> </u>		ļ						_		\vdash	 			17
8	Heptachlor Epoxide	<u> </u>	↓		ļ		 							 	H	 	1		\top
8	Endosul fan I				<u> </u>				├		\vdash			 	H		1		+
16	Dieldrin		<u> </u>				-	ļ		ļ			\vdash				╁╌╴		╅┥
16	4,4°-DDE				L		!		ļ								╁		+-1
16	Endrin					<u>'</u>	1			ļ			-	 			╁		1-1
16	Endosulfan II				<u> </u>		 		ļ		<u> </u>	 				 	 		╂╾┦
16	4,41-DDD		<u> </u>		<u> </u>		 		 		 	ļ	 		-	 	-		+1
16	Endosulfan Sulfate		<u> </u>		<u>↓</u>				↓			 		ļ	-	 	┼─		+
16	4,4*-DDT		1		<u> </u>		↓			ļ			├—			╢───	┼─		+
80	Methoxychlor			<u> </u>	<u> </u>	<u></u>	<u> </u>		ļ		<u> </u>		├	 	┼	 	┼		+-
16	Endrin-Ketone				<u> </u>		ــــــ			 			├—	 -	├	 -	╂		+-1
86 16	alcha-Chlordene			<u> </u>				<u> </u>	 _		 		 -	 	├ ──	 -	-	 	+-
8016					<u> </u>	<u> </u>	1		<u> </u>	 	 		 	 	├	 	 		+
160	Toxaphene						<u> </u>		<u> </u>		<u> </u>		 	ļ		 	┿──		+-
80	Aroclor-1016								<u> </u>		↓		├		├—	 	┼─	 	╅┩
80	Aroclor-1221	1						ļ	<u> </u>		<u> </u>		├ ─	 		∦ _ :	╁┷	 	+-
80	Aroclor-1232								<u> </u>		ļ	 	 	 	├	₩	╁─	 	+-
80	Aroclor-1242								<u> </u>		<u> </u>	 	├	 	├ ─	₩	-	 -	+
80	Aroclor-1248								<u> </u>		Ь	 	-	!	├ ─	 	+	 	╁
160	Aroctor-1254								<u> </u>		!	 	 	 	├ ──		+	#	╫
160	Aroclor-1260		T							<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u></u>	<u> </u>		<u> </u>	

CRQL = Contract Required, Quantitation Limit POL

PRACTICAL

Q = Data Validanin Qualities

SEE NARRATIVE FOR CODE DEPINITIONS revised D7/90

		•
Page	οf	
5 -		

DATA SUMMARY FORM: ORGANICE 2

200	f20
20o	T 60

Site Name:	soil samples (µg/kg)	
Case #: Sampling Date(s):	•	To calculate sample

quantitation limit: (QL * Dilution Factor) / ((100 - % moisture)/100)

																 ir		_
Sample No.						∦					 .							\neg
Dilunon Foctor									<u> </u>									
Location	<u>.</u>	∦-		#														\neg
i i		₩-	<u> </u>															
1		ı		.				ļ				i	*	ĺ				- 1
1						ı		ľ		İ	ļ	ŀ		ļ	,			ı
			4	0	long	0	conc.	a	cenc.	a	conc.	a	conc.	a	conc.	a	conc.	a
	conc.	<u> </u>	Conc.	一一	Carre													┷
O. I ENDRIN ALDEHYDE		∦			 											/		╁╌┦
10 ISODRIN		╌╫		-1														┦
10 KEPONE		- 									-					L		╄┩
200 SULFOTEPP		┈╫		 		1												4
200 PHORATE																		4
200 DINETHOATE				╅													<u> </u>	╂╼┦
200 DISULFOTON				1												-	ļ	╁┈
200 NETHYL PARATHION				-													ļ	4
200 ETHYL PARATHION				1												1		—
1000 FAMPHUR				1												L	 	┿
1000 THIONAZIN			<u> </u>	1								Ì		<u> </u>			 	┼
1000 0.00-TRIETHYLAMOSTHOROTHIDATE				-										<u> </u>		<u> </u>		4
2.0 2, 3, 7,8 - TCDD		$\vdash \vdash$		+	 	1										 	 	┼
5.0 PCDOs				†	 	 		1							<u> </u>	L	 	-}
5.0 PLDF-	ļ	├─ ┤		 	#	 									<u> </u>		↓	┿
500 CYANIDE		├─ ┤		┼──	 	+	1								<u> </u>	ļ		4
2000 SULFIDE				+	 	1	#	1								<u> </u>	↓	┷
		┝╼╌┧		+	 	┪	 	1	1	\vdash						<u> </u>		4-
	ļ			+	-	+	 	1	†	1							<u> </u>	┵
		 		+	 	+-	╫	+	1	\top							<u> </u>	┷
		┥		+-	 	 	╫──	+-		1	1						<u> </u>	┷
	 	1	 	+	 	+-	-	┼─	 	†	 	1	1					丄
	<u> </u>	} }		+-	#	+-	 	+	1	1	1	1					<u> </u>	<u> </u>

PQL = Quantitation Limit
Pacacal

SEE NARRATIVE FOR CODE DEFINITIONS revised 97/90

Q = Data Validanoi Qualifici

CIBA-GEIGY, Cranston, Rhode Island REGION I Data Review Worksheets Re-Edited for Appendix IX Constituent Analysis Reference No.:

REGION I REVIEW OF ORGANIC CONTRACT LABORATORY DATA PACKAGE

The hardcopied been reviewed a review included:	(laboratory name)and the quality assurance and	data package received a performance data summari	at Region I has zed. The data						
Matrix: No. of Samp Trip Blank N Equipment I Field Dup N Sampling Da Shipping Da Date Rec'd I Sample Iden	No.: Blank No.: os.: os.: ite(s): te(s): by Lab:								
	Edition) requires that specific rmine the performance were be								
-Holdir -GC/M -Calibr -Blanks		-Matrix Spike/Matrix Spike Dup -Field Duplicates -Internal Standard Performance -Pesticide Inst. Performance -Compound Identification -Compound Quantification							
Overall Com	ments:								
Definitions a	and Qualifiers:								
J - Ap R - Re	ceptable data. proximate data due to quality ject data due to quality control alyte not detected								
Reviewer:	Date:								

CM90-246.F Page 1 of 28

REGION I
Data Review Worksheets

I. DATA COMPLETENESS

MISSING INFORMATION

DATE LAB CONTACTED

DATE REC'D

Page 2 of 28

II. HOLDING TIMES

Complete table for all samples and circle the fractions which are not within criteria.

	•	VOA	BNA	A	PE	ST
SAMPLE ID	DATE SAMPLED	DATE ANAL	DATE EXTR		DATE EXTR	DATE ANAL

In accordance with Table 4-1 of Section 4.0 SW-846 and EPA Region I protocols the holding time criteria and action levels are:

VOA - Unpreserved:

Aromatic within 7 days, non-aromatic within 14 days of sample

collection.

Preserved:

Both within 14 days of sample collection.

Soils:

Both within 14 days of sample collection.

BNA & PEST -

Water: Extracted within 7 days, analyzed within 40 days.

Soils (Solids): Extracted within 14 days, analyzed within 40

days.

ACTION:

- 1. If holding times are exceeded, all positive results are estimate (J) and non-detects are estimated (UJ).
- 2. If holding times are grossly exceeded, the reviewer may determine that non-detects are also unusable.

III. GC/MS TUNING

The DFTPP performance results were reviewed and found to be with the specified criteria.

If no,

Samples affected:

The BFB performance results were reviewed and found to be within the specified criteria.

If no,

Samples affected:

If mass calibration is in error refer to the Region guidelines for expanded criteria. If necessary, qualify all associated data as unusable (R).

Note: The data reviewer must realize that the BFB and DFTPP tune criteria for CLP and SW846 protocols are the same.

CM90-246.F Page 4 of 28

IV A. VOLATILE CALIBRATION VERIFICATION

Date of Initial Calibration:
Dates of Continuing Calibrations:
Instrument ID:
Matrix/Level:

<u>DATE</u>	CRITERIA OUT RF,%RSD,RF,%D	COMPOUND (VALUE)
	Samples Affected:	
	Samples Affected:	
	Samples Affected:	
	Samples Affected:	
	Samples Affected:	
	Samples Affected:	
	Samples Affected:	
	Samples Affected:	
	Samples Affected:	
	Samples Affected:	
	ll RF's must be >0.05	

ACTION:

All %D's must be <25%

3.

- 1. If any compound has an initial RF or a continuing RF of <0.05:
 - a. Flag positive results for that compound as estimated (J).
 - b. Flag non-detects for that compound as unusable (R).
- 2. If any compound has a %RSD >30% or a %D >25% for volatiles and >30% for semivolatiles:
 - a. Flag positive results for that compound as estimate (J).
 - b. Flag non-detects for that compound as estimated (UJ) if the %RSD or %D is >50%.

A separate worksheet should be filled out for each initial curve.

IV B. SEMIVOLATILE CALIBRATION VERIFICATION

	nitial Calibration Continuing Calibrations at ID	
<u>DATE</u>	<u>CRITERIA OUT</u> RF,%RSD,RF,%D	COMPOUND (VALUE)
	Samples Affected:	
	Samples Affected:	
	Samples Affected:	
	Samples Affected:	
	Samples Affected:	·
	Samples Affected:	
	Samples Affected:	ı
 ·	Samples Affected:	
	Samples Affected:	
	Samples Affected:	•
	Samples Affected:	
See works	sheet IV-A for criteria and act	ons.

CM90-246.F Page 6 of 28

A new worksheet should be filled out for each initial curve.

REG	ION I	
Data	Review	Worksheet

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

List the contamination in the blanks below.

1. Laboratory Blanks
CONCENTRATION LEVEL: (low or medium)*

<u>DATE LAB ID FRACTION/ COMPOUND CONCENTRATION/ MATRIX</u>

<u>COMPOUND UNITS</u>

2. Equipment (Field) and Trip Blanks

<u>DATE LAB ID FRACTION/ COMPOUND CONCENTRATION/ MATRIX</u>

<u>MATRIX</u>

<u>COMPOUND CONCENTRATION/ UNITS</u>

•A separate worksheet should be used for low and medium level blanks.

V B. BLANK ANALYSIS RESULTS (Section 3)

3. Blank actions

Action levels should be based upon the highest concentration of contaminant determined in any blank. The action level for samples which have been concentrated or diluted should be multiplied by the concentration/dilution factor. No positive sample result should be reported unless the concentration of the compound in the sample exceeds the action level of 10 x's the amount for any other compound. Specific actions are as follows:

- 1. The concentration is less than the CRQL, report the CRQL.
- 2. The concentration is greater than the CRQL, but less than the action level, report the concentration found U.
- 3. The concentration is greater that the action level, report the concentration unqualified.

For examples refer to the Regional Guidelines.

Common contaminants =	<u> </u>	, acetone, 2-butanone, to thalate ester compound	•
LEVEL:			
COMPOUND	MAX. CONC./ <u>UNITS</u>	ACTION LEVEL/ <u>UNITS</u>	CROL

A separate worksheet should be used for low and medium level blanks.

CM90-246.F Page 8 of 28

VI. SURROGATE SPIKE RECOVERIES

List the percent recoveries which do not meet the criteria for surrogate recovery.

Matrix:										
TR #'S	TOL	<u>VOA</u> 4-BFB	DCE	NBZ	<u>B/N</u> FBP	ТРН	PHL	A 2FP	ТВР	PEST DBC
OC Limits (WATERS)	88 to 110	86 to 115	76 to 114	35 to 114	43 to 116	33 to 141	30 to 94	21 to 100	10 to 123	24 to 154
(SOLIDS)	84. to 138	59 to 113	70 to 121	23 to 120	30 to 115	18 to 137	24 to 113	25 to 121	19 to 122	20 to 150

^{*}The DBC windows are advisory only Surrogate Actions:

PERCENT RECOVERY

	<u><10%</u>	<u>10%-(MIN)</u>	$\geq R(MAX)$
Positive sample results	J	Ĵ	J
Non-detected results	R	UJ	Α

R(MIN): Denotes lower limit of surrogate recovery range window (i.e., TOL which denotes the VOA surrogate spiking standard toluene -d8) has R(MIN) of 88% for a water matrix sample and a R(MAX) of 110. The acceptance window is therefore 88-110%. Surrogate action should be applied:

- 1. If at least two surrogates in a B/N or A fraction or one surrogate in the VOA fraction are out of specification, but have recoveries of >10%.
- 2. If any one surrogate in a fraction shows <10% recovery.

	VII	A.	MATRI	X SPIKE/M	IATRIX S	PIKE DU	PLICATE	•	•
	1.	Matrix	Spike/M	atrix Spike	Duplicate	Recoverie	es and Precision	1	
	TR	Nos	,		Level:		Matrix:		
	SW- and	846. R RPD m	adian Co aximums	rporation (the laborat Form III.	tory) must	s which do not supply the new Radian Corpora	SW-846 perc	ent recoveries
FRACTION/ MS OR MSI						<u> </u>	%REC/ COMPOUND	<u>% REC/I</u>	RPD OCIMIS
							•	,	
						•		•	
QŢ	J ALI	FICAT	ION IS L	IMITED 7	O THE U	NSPIKED	SAMPLE ON	LY.	
1		T£		-d door -	nt maat th		ranga fallow	the estions s	totad

If any compound does not meet the recovery range, follow the actions stated below:

> PERCENT RECOVERY 10%-R(MIN) >R(MAX) J R UJ

Positive sample results Non-detected results

R(MIN): Denotes lower limit of matrix spike recovery range window (i.e., trichloroethene (water matrix): 71%). R(MAX) for trichloroethene (water matrix) is 120% The acceptance window is therefore 71-120%.

If any compound does not meet the RPD criteria, flag positive results for that 2. compound as estimated (J).

A separate worksheet should be used for each MS/MSD pair.

Refer to Appendix A for matrix spike percent RPD maximums and percent recoveries.

REG	ION I	
Data	Review	Worksheets

TR Nos.

VII	B.	MATRIX SPIKE/MATRIX	SPIKE DUPLICATE	(Section 2)
-----	----	---------------------	-----------------	-------------

3.	Matrix	Spike	Duplicate	-	Unspiked	Compound	ls

List the concentrations of the unspiked compounds and determine the percent RSD's of the unspiked sample, matrix spike, and matrix spike duplicate. No limits have been developed for the RSD values of the unspiked compounds.

FRACTION

COMPOUND

SAMPLE, MS, MSD CONC.

%RSD

The reviewer must use professional judgment to determine if there is a need to qualify any of the unspiked compounds in the sample.

Page 11 of 28

VIII.	FIELD DUPLICATE PR	FIELD DUPLICATE PRECISION				
	TR Nos,	Matrix:	, 			
List t	he concentrations of the com	pounds which do not meet the	following RPD criteria:			

- 1. An RPD of <30% for water duplicates.
- 2. An RPD of <50% for soil duplicates.

FRACTION COMPOUND SAMPLE CONC DUP SAMPLE CONC RPD

ACTIONS:

- 1. If the results for any compounds do not meet the RPD criteria, flag the positive results for that compound as estimated.
- 2. If one value is non-detected, and one is above the CRQL:
 - a. Flag the positive result as estimated (J).
 - b. Flag the non-detected result as estimated (UJ).

NOTE: Professional judgment may be utilized to apply duplicate action to all samples of a similar matrix.

A separate worksheet should be filled out for each field duplicate pairs.

CM90-246.F Page 12 of 28

IX. INTERNAL STANDARD PERFORMANCE

List the internal standard areas of samples which do not meet the criteria of +100% or -50% of the internal standard area in the associated continuing calibration standard.

IS AREA/
<u>SAMPLE ID DATE IS OUT RT ACCEPTABLE RANGE ACTION</u>

ACTION:

- 1. If an IS area count is outside the criteria -50% or +100% of the associated standard:
 - a. Positive results for compounds quantitated using that IS are flagged as estimated (J) for that sample fraction.
 - b. Non-detects for compounds quantitated using that IS are flagged as estimated (UJ) for that sample fraction.
 - c. If extremely low area counts are reported, or if performance exhibits a major drop-off, then a severe loss of sensitivity is indicated. Non-detects should then be flagged as unusable (R).
- 2. If an IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction.

Page 13 of 28

- X A. PESTICIDE INSTRUMENT PERFORMANCE (Section 1)
- 1. DDT Retention Time

List the DDT standards which have a retention time (RT) of less than 12 minutes on the packed column (except OV-1 or OV-101).

IS AREA/
SAMPLE ID DATE IS OUT RT ACCEPTABLE RANGE ACTION

Note: A megabore or capillary column standard RT may be shorter than 12 minutes.

ACTION:

If the RT is less than 12 minutes, examine the chromatography to evaluate the separation. If adequate separation is not achieved, flag all affected compound data as unusable (R).

CM90-246.F Page 14 of 28

- X B. PESTICIDE INSTRUMENT PERFORMANCE (Section 2)
 (Form is for both organophosphorous pesticides and herbicides as well as organochlorine pesticides
- 2. Retention Time Windows

List the compounds which are not within the established windows.

COMPOUND DATE RT RT WINDOW SAMPLES AFFECIED (TIME)

Check the sample chromatograms of the samples analyzed after the last in control standard for peaks within an expanded window. If no peaks are present, there is usually no effect on the data. Refer to Regional guidelines for information on qualifying data if peaks are present. If peaks are present, discuss actions below:

CM90-246.F Page 15 of 28

- X C. PESTICIDE INSTRUMENT PERFORMANCE (Section 3)
- 3. DDT and Endrin Degradation

List the standards which have a DDT or Endrin breakdown of greater than 20%.

				DDD, DDE OR
STANDARD	DDT OR	PERCENT	ENDRIN	ENDRIN KETONE
ID	ENDRIN	BREAKDOWN	SAMPLES AFFECTED	<u>PRESENT</u>

If the percent breakdown for DDT is greater than 20%.

- 1. Flag all positive results for DDT as estimated (J) for all samples following the last in control standard. If no DDT was present, but DDD and/or DDE are positive, then flag the quantification limit for DDT as unusable (R).
- 2. Flag all positive results for DDD +/or DDE as estimated (J).

If the percent breakdown for Endrin is greater than 20%:

- 1. Flag all positive results for endrin as estimated (J) for all samples following the last in-control standard. If no endrin was detected, but endrin aldehyde and/or endrin ketone are positive, flag the quantification limit for endrin as unusable (R).
- 2. Flag all positive results for endrin ketone as estimated (J).

- X D. PESTICIDE INSTRUMENT PERFORMANCE (Section 4)
- 4. DBC Retention Time Check

List the percent difference for the DBC shift greater than 2% for packed columns, greater than 1.5% for wide-bore capillary columns, or greater than 0.3% for narrow-bore capillary columns.

TR #'s DBC % DIFFERENCE ACTIONS

If the DBC does not meet the retention time criteria, the analysis may be flagged as unusable (R) for the affected samples, but qualification of the data is left up to the professional judgment of the reviewer. Discuss any qualification of the data below:

CM90-246.F Page 17 of 28

- XI A. PESTICIDE CALIBRATION (Sections 1 and 2)
 (Form is for both organophosphorous pesticides and herbicides as well as organochlorine pesticides.)
- 1. Initial Calibration

List the compounds which did not meet the Relative Standard Deviation (RSD) criteria of less than 20% for the initial calibration on the quantification column.

DATE COMPOUND %RSD COLUMN SAMPLES AFFECTED

Flag all associated positive results as estimated (J) for samples which did not meet the %RSD criteria.

2. Analytical Sequence

Did the laboratory supply the analytical sequence utilized and the appropriate retention time windows for each analyte in the check standard as per the requirements of Method 8000 in SW-846 3rd Edition and the Radian OAPP. Yes or No.

If no,

The data may be affected. The data reviewer must use professional judgment to determine the severity of the effect and qualify the data accordingly. Discuss any actions below. Refer to Method 8000 protocols for guidance on any action taken. Contact the laboratory to discuss any anomalies encountered to prevent reoccurrence on future analysis.

CM90-246.F Page 18 of 28

REGION Data Revi	I iew Worksh	neets	
XI	В.	PESTICIDE CALIBRATION (Section 3)	
3.	Cont	inuing Calibration	
	•	which did not meet the percent difference (%D) criteria of $\pm 15\%$ on n or $\pm 20\%$ on the confirmation for the continuing calibration.	the
<u>DATE</u>	COMPO	UND %D COLUMN SAMPLES AFFECTED	

If the %D criteria is not met, flag all associated positive results as estimated (J).

REGION I	I ew Worksheets				
XII.	SAMPLE QUAN	NTIFICATION			·
In the space	ce below, please sh	now a minimum	of one sample	e calculation p	er fraction:
<u>VOA</u> :					
	•				
	·			·	÷
BNA:				·	
					٠
			•		,
DEST/DCD	·				
PEST/PCE	<u>.</u>				
Organosph	orous pesticides				
Herbicides					
11010101000					
				٠,	
PCDD/PC	DF				
·					
Organochl	orine pesticides				
<u> </u>	erme beenerden				

CM90-246.F Page 20 of 28

- XIII. ADDITIONAL APPENDIX IX Method specific validation checks involving Section A: Method 8150 (Herbicides); Section B: Method 8140 (Organophosphorous Pesticides); Section C: Method 8080 (Organochlorine Pesticide and PCBs),
 - A. Method 8150's surrogate standard is 2,4-dichlorophenyl acetic acid
 List the surrogate percent recovery:
 List the QC limits listed on the Summary Form for each obtained from the
 Herbicides Table (8150)
 Surrogate Actions:

Percent Recovery <10% 10%-R(MIN)>R(MAX)

Positive Sample Results J J J Non-detected Results R UJ advisory only

Note: The laboratory must report an acceptable surrogate recovery range as per the requirements of Sections 8.3 of Method 8150. As such, the Method 8150 surrogate spike acceptance window is 50-150% for both waters and solids. The R(MIN) is 50% and R(MAX) is 150%. Method 8150's MS/MSD's are 2,4-D, Dinoseb, 2,4,5-T and 2,4,5-TP (Silvex).

List the Method 8150 (Herbicides) percent recoveries and RPDs of compounds which do not meet the criteria listed on EPA Form III by Radian (laboratory).

Fraction/ % Rec

MS or MSD Compound % Rec/RPD QC Limits

CM90-246.F Page 21 of 28

TABLE 8150: HERBICIDES

	Matrix Spike (a)				Surrogate Spike		-
		cision % (b)			Accuracy (c) % of Recovery		
Parameter	Water	Solids	Water	Solids	Water	Solids	
<u> </u>	<u>vvator</u>	<u>oonas</u>	<u>water</u>	<u>DOMOS</u>	<u>vvuioi</u>	<u>DOMAS</u>	
SW-846 (3rd Ed.) Meth	od 8150		•		,		
Herbicides:							
2,4-D	13	N/A	69-159	N/A		••	
Dinoseb	15	N/A	56-150	N/A		֥	
2,4,5-TP	25	N/A	29-182	N/A			
2,4,5-T	9	N/A	82-138	N/A	••	**	
2,4-Dichlorophenylacetic	cacid		••	••	50-150	50-150	

⁽a) Matrix spike precision and accuracy goals, where stated, are found in EPA method references and will be used as starting points. Limits developed in-house will be used and updated throughout the program.

⁽b) "RPD" = relative percent difference. Precision is expressed according to the type of measurement (i.e., for field duplicates precision is expressed as the RPD between duplicate results).

⁽c) Accuracy goals stated are from EPA CLP, SW-846 methods, or Radian derived limits. These limits willbe used as starting points for control chart generation. Limits developed in-house will be used and updated throughout the program.

N/A Not available (to be developed by Radian).

B. The surrogate standard for Method 8140 is triphenyl phosphate. For waters the acceptance window is 40-140% [R(MIN):40; R(MAX):140] and for solids the acceptance window is 42-154% [R(MIN):42; R(MAX):154]. Method 8140's MS/MSD compounds are: dimethoate, thionazin, sulfotepp, disulfotan, ethylparathion, famphur, methylparathion and phorate. Refer to Table 8140.

List the percent recovery:

List the QC limits listed on the Summary Form for each obtained from the Organophosphorous Pesticides Table (8140) Surrogate Actions:

Percent Recovery <10% 10%-R(MIN)>R(MAX)

Positive Sample Results J J J Non-detected Results R UJ advisory only

List the Method 8140 (Organophosphorous Pesticide) percent recoveries and RPD's of compounds which do not meet the criteria listed on EPA Form III by Radian (laboratory).

Fraction/ % Rec

MS or MSD Compound % Rec/RPD QC Limits

CM90-246.F Page 23 of 28

TABLE 8140: ORGANOPHOSPHOROUS PESTICIDES

·		ndard iation		acy (a) Recovery		acy (a) Recovery
Parameter	Water	Solids	Water	Solids	Water	Solids
SW-846 Method 8140						
Organophosphorus Pesticides:						
Dimethoate	N/A	N/A	N/A	N/A		
Famphur	50	33	10-168	10-136		
Ethylparathion	14	21	45-112	29-133		••
Thionazin	N/A	N/A	N/A	N/A		
Disulfoton	36	39	10-138	10-219		
Methyl Parathion	35	36	10-213	10-177		
Phorate	32	33	10-183	10-166		
≫Sulfotepp	N/A	N/A	32-124	10-165		
Triphenylphosphate		••	••		23-176	28-174

⁽a) These limits were developed in-house. Radian will update these throughout the progam.

N/A Not available (to be developed by Radian).

C. Method 8080 (Organochlorine Pesticide and PCBs)

The surrogate standard is dibutylchlorendate. For waters the acceptance windor is 24154% [R(MIN):24; R(MAX):154] and for solids the acceptance window is 20-150%
[R(MIN):20; R(MAX):150].

List the percent recovery:

List the QC limits listed on the Summary Form for each obtained from the Organochlorine Pesticide and PCB Table 8080.

Surrogate Actions:

Percent Recovery <10% 10%-R(MIN)>R(MAX)

Positive Sample Results	J	J	J
Non-detected Results	R	UJ	advisory only

Note: The laboratory must report an acceptable surrogate recovery range as per the requirements of Section 8.3 of Method 8080. As such, the Method 8080 surrogate spike acceptance window is 24 - 154% for waters and 20 - 150% for solid notices. The MS/MSD compounds are: gamma - BHC, heptochlor, aldrin, dieldrin, endrin and 4,41-DDT. Refer to Table 8080.

List the Method 8080 (Organochlorine Pesticide and PCBs) percent recoveries and RPDs of compounds which do not meet the criteria listed on EPA Form III by Radian (laboratory).

If any compound does not meet the RPD criteria, flag positive results for that compound as estimated (J).

Fraction/	% Rec		
MS or MSD	Compound	% Rec/RPD	QC Limits

CM90-246.F

TABLE 8080: ORGANOCHLORINE PESTICIDES AND PCBs

		Matrix Spike (a) Precision Accuracy RPD% (b) % of Recovery		Surrogate Spike Accuracy (c) % of Recovery		-	
Parameter	Water	<u>Solids</u>	Water	Solids	Water	Solids	
Pesticides/Polychlorinate Biphenyls:	<u>ed</u> .	,					
gamma-BHC	15	50	56-123	46-127			
Heptachlor	20	31	40-131	35-130			
Aldrin	22	43	40-120	34-132			
Dieldrin	18	38	52-126	31-134		••	
Endrin	21	45	56-121	42-139	••		
4,4'-DDT	27	50	38-127	23-134		•-	
Dibutylchlorendate					24-154	20-150	

⁽a) Matrix spike precision and accuracy goals, where stated, are found in EPA method references and will be used as starting points. Limits developed in-house will be used and updated throughout the program.

CM90-246.F Page 26 of 28

⁽b) "RPD" = relative percent difference. Precision is expressed according to the type of measurement (i.e., for field duplicates precision is expressed as the RPD between duplicate results).

⁽c) Accuracy goals stated are from EPA CLP, SW-846 methods, or Radian derived limits. These limits will be used as starting points for control chart generation. Limits developed in-house will be used and updated throughout the program.

XIV. Dioxin (Method 8280: Full Scan Tetra-Octa including 2,3,7,8-TCDD)

Refer to Appendix B for Radian Dioxin Summary Forms. QAPP QA/QC criteria for dioxins are listed below:

PCDD AND PCDF (DIOXINS AND FURANS) QUALITY CONTROL OBJECTIVES

Precision RPD %
for
Duplicate Analyses (a)
Parmeter Water

PCDD 60-140

PCDF 60-140

⁽a) These objectives are for recovery check samples, it is anticipated that the field samples will fall within these objectives.

ORGANIC REGIONAL DATA ASSESSMENT

REFERENCE NO.:

SITE: CIBA-GEIGY, CRANSTON, RI

LABORATORY:

NO. OF SAMPLES/ MATRIX: REVIEWER (IF NOT ESD):

SDG #: SW846, 3RD EDITION:

REVIEWER'S NAME: COMPLETION DATE:

DATA ASSESSMENT SUMMARY

		<u>VOA</u>	BNA	PEST	Organo-P,CL PESTICIDES	HERBICIDES	PCDD PCDF
1.	HOLDING TIMES		,				
2.	GC/MS TUNE/INSTR. PERF.		-			· ·	
3.	CALIBRATIONS						
4.	BLANKS				 		
5.	SURROGATES		-				
6.	MATRIX SPIKE/DUP						
7.	OTHER QC						
8.	INTERNAL STANDARDS						
9.	COMPOUND IDENTIFICATION						
10.	SYSTEM PERFORMANCE						
11.	OVERALL ASSESSMENT						
M = Z =	Data had no problems/or qualified due to m Data qualified due to major problems. Data unacceptable. Problems, but do not affect data.	, , , , , , , , , , , , , , , , , , ,				·	
AC1	TIONS ITEMS:						
						<i>.</i>	
ARI	EAS OF CONCERN:						
			· · ·				-
		-					:

APPENDIX A MATRIX SPIKE RPD MAXIMUMS AND PERCENT RECOVERIES

MS/MSD QA/QC CRITERIA VOLATILES

	. •	**	
Ma	trix	spike	(a)

Precision RPD %(b)

Accuracy (a) % of Recovery

<u>Parameter</u>	Water	Solids	<u>Water</u>	Solids
Volatiles Trichloroethene	14	24	71-120	62-137
Benzene	11	21	76-127	66-142
Toluene	13	21	76-125	59-139
Chlorobenzene	13	21	75-130	60-133
1,1-Dichloroethene	14	22	61-145	59-172
Toluene-d8	•-	••		••
4-Bromofluorobenzene	••			••
1,2-Dichloroethane-d4				

⁽a) Matrix spike precision and accuracy goals, where stated, are found in EPA method references and will be used as starting points. Limits developed in-house will be used and updated throughout the program.

⁽b) "RPD" = relative percent difference. Precision is expressed according to the type of measurement (i.e., for field duplicates precision is expressed as the RPD between duplicate results).

⁽c) Surrogate recoveries are listed on page 9 of 28.

MS/MSD QA/QC CRITERIA SEMIVOLATILES

_		· · · · · · · · · · · · · · · · · · ·			
	Precision RPD %(b)			racy (a) Recovery	
Parameter	Water	Solids	Water	Solids	
GC/MS Semivolatiles:					
Phenol	42	35	12-89	26-90	
2-Chlorophenol	40	50	27-123	25-102	
1,4-Dichlorobenzene	28	27	36-97	28-104	
N-Nitroso-di-n-propyl-amine	38	38	41-116	41-126	
1,2,4-Trichlorobenzene	28	23	39-98	38-107	
Acenaphthylene	31	39	46-118	31-137	
4-Nitrophenol	50	50	10-80	11-114	
2,4-Dinitrotoluene	38	47	24-96	28-89	
Pentachlorophenol	50	47	9-103	17-109	
Pyrene .	31	36	26-127	35-142	
Nitrobenzene-d5					•
2-Fluorobiphenyl				"	
p-Terphenyl-d14		•			
2-Fluorophenol					
2,4,6-Tribromophenol			••		•
Propazine	18*	5*	34-118*	77-100*	
Tinuvin-327	15*	6*	47-123*	77-107*	

⁽a) Matrix spike precision and accuracy goals, where stated, are found in EPA method references and will be used as starting points. Limits developed in-house will be used and updated throughout the program.

⁽b) "RPD" = relative percent difference. Precision is expressed according to the type of measurement (i.e., for field duplicates precision is expressed as the RPD between duplicate results).

⁽c) Surrogate recoveries are listed on page 9 of 28.

^{*} These values were calculated based on data collected from the reageant spike blanks and fine sediment samples. These data will be updated as more data points become available throughout Round I.

MS/MSD QA/QC CRITERIA PESTICIDE/PCBs

_					
	Precision RPD %(b)			acy (a) Recovery	
Parameter	Water	Solids	Water	<u>Solids</u>	
Pesticides/Polychlorinated Biphenyls: gamma-BHC	15	50	56-123	46-127	
Heptachlor	20	31	40-131	35-130	
Aldrin	22	43	40-120	34-132	
Dieldrin	18	38	52-126	31-134	•
Endrin	21	45	56-121	42-139	
4,4'-DDT	27	50	38-127	23-134	
Dibutylchlorendate		••			

⁽a) Matrix spike precision and accuracy goals, where stated, are found in EPA method references and will be used as starting points. Limits developed in-house will be used and updated throughout the program.

⁽b) "RPD" = relative percent difference. Precision is expressed according to the type of measurement (i.e., for field duplicates precision is expressed as the RPD between duplicate results).

⁽c) Surrogate recoveries are listed on page 9 of 28.

APPENDIX B DIOXIN SUMMARY FORMS METHOD 8280 (FULL-SCAN) TETRA - OCTA

WORKSHEET TO CALCULATE TOXICITY EQUIVALENT FACTORS (TEFs)

INSTRUCTIONS: TEFS BASED ON THE DRAFT 4/89 CLP DIOXIN PROTOCOL

Results for Each Sample Are Given Two Lines: The top line is the concentration of the analyte in ppb.

The bottom line equates that concentration to the toxic equivalent of 2,3,7,8-TCDD.

Sample ID#	Total TEF	Other TCDD [0.01]	2,3,7,8 TCDD [1.0]	Other PCDD [0.005]	2,3,7,8 PCDD [0.5]	Other HxCDD [0.0004]	2,3,7,8x HxCDD [0.04]	Other HpCDD [0.0004]	2,3,7,8x HpCDD [0.001]	OCDD [0]	Other TCDF [0.001]	2,3,7,8 TCDF [0.1]	Other PCDF [0.0004]	2,3,7,8x PCDF 0.05,1 [0.1]	Other HxCDF [0.0001]	2,3,7,8x HxCDF [0.001]	Other HpCDF [0.00001]	HpCDF	OCDF
			-																
	:		<u>.</u>			•						-		-					
		_						· · ·	·					-					
													-				· · · ·		
								- · · ·											
															· 				
	<u> </u>			· · · · · · · · · · · · · · · · · · ·					. <u>.</u>			-	<u></u>						
															_				
							•			·	·								
87X4660\	WORKSHI	Γ.2		•															

SW-846 METHOD 8280

DIOXIN

SUMMARY

FORMS CIBA-GEIGY SITE CRANSTON, RHODE ISLAND

Form 2:	Internal Sta	indard Recove	ry
Form 3:	Initial Calib	ration Summar	ý
Form 4:	Continuing	Calibration Su	mmary
Form 5:	Standard W	Vorksheet	
Form 6:	Sample Wo	orksheet	
Form 7:	Quality Cor	ntrol Report	
Form B-	6: Dioxin Raw	Sample Data	(TCDD, TCDF)
Form B-	6A:Dioxin Raw	Sample Data ((PCDD, PCDF)
Form B-	6B:Dioxin Raw	Sample Data (HxCDD, HxCDF
Form B-	6C:Dioxin Raw	Sample Data	(HpCDD,HpCDF
Form B-	6D:Dioxin Raw	Sample Data ((OCDD, OCDF)

DIOXIN AND FURAN DATA VALIDATION WORKSHEET

Based on Method 8280 in SW-846 (3rd Edition) and Radian's Standard Operating Procedure 11/09/90

Prepared by Diana Baldi, CIBA-GEIGY Reviewed by John Lorenzo, Woodward-Clyde Consultants

REQUIREMENTS	ACCEPTABLE LIMITS	ACTION IF EXCEEDED
Initial calibration 5 point curve in triplicate (Form 3)	% RSD between 3 runs must be <15% for all analytes	Recalculate concentration using daily RF; note in narrative; request reanalysis for compliance
PCDD/PCDF retention time standard	First and last eluting isomer must be detected	Request reanalysis
Chromatography standard (included in RT standard)	>25% valley between 1,2,3,4- TCDD and 2,3,7,8-TCDD	Look for high bias in any positives for 2,3,7,8-TCDD; if sample results affected, request reanalysis
Continuing calibration (Form 4)	a) RF <30% of eve RF from initial calibration b) All major chlorine isotope cluster abundances within 15% of theoretical	a) Recalculate concentration using daily RF; note in narrative b) Look for false negatives due to failing ion criteria; Note: Calculate EMPC, include EMPC in TE; if action level request reanalysis
Identification of positives	 a) Major chlorine isotope cluster ions must be within 15% of theoretical b) COCL loss peak must be present c) Peak maxima must agree within 2 scans 	a) See b) above b) Look for false positives c) Look for false positives
Internal standards (Form 2)	a) Must be present at least 10:1 signal to noise ratio in all standards and samples b) Should have absolute recovery greater than 40%	a) Require reanalysis b) No action if S:N criteria met
Surrogate accuracy	Within 40% to 120%	Options: a) No action b) Add "J" qualifier to associated homologs

The process of data validation flows as follows:

Step 1: Performance evaluation (PE) samples will be incorporated in the field shipment of samples to Radian. The results of the PE samples will be validated according to the protocols stated above. The validated results will be called in to USEPA Region I designee. Upon reporting the results, the true values will be released to CIBA-GEIGY designee (Diana Baldi). If the results are outside the USEPA acceptance limits, a reanalysis of the entire sample set will be required. If the results of the PE are acceptable, then validation of the remaining samples will proceed.

Note: The worksheets provided as an appendix will be used when appropriate.

Step 2: Verify all internal standards in all samples have S:N 10:1 utilizing Form 2.

Step 3: Calculate all ion ratios (Form 5) for peaks that may be positives in samples; spot check ion ratios in the continuing and initial calibration focusing on those congeners that may have false negatives in samples due to ion ratios.

Step 4: Spot check the criteria in the initial and continuing calibration data submitted in Forms 3 and 4. Note if RT for the internal standards shift during the time of analysis for the sample group.

Step 5: Look for RT cutoff points for each homolog based on RT standard. Look for potential false negatives due to being outside the established RT window because of a RT shift.

Step 6: Recalculate all positives and EMPC using either the initial eve RF or the continuing calibration RF (as stated in the above criteria table).

Step 7: Enter the data into the TEF spreadsheet. Look for anything unusual and recheck all entries.

The final results are to be presented in a table that includes the concentration of each of the twelve reported values (2,3,7,8-TCDD, 2,3,7,8-TCDF, tetra thru octa chlorinated dibenzo-p-dioxins and dibenzofurans). The table will also calculate the total Toxicity Equivalents (TE). The TE values are based on the 9 November 1988 Revised Dioxin TE Factors memo.

FORM 2

INTERNAL STANDARD RECOVERY

AB	EPA	C-TCDD	*C-HXCDD	*C-OCDD	*C-TCDF	*C-HpCDF
AB D	ID				.	
					.\	
					.	
		_	_	-	-	-
	_	_	_	-	_	
	_	_	_	_	-	-
	_		_	-	-	-
	_			-	-	
		_	-	-	-	
	_	_	-			
			_			
			-			

- +C-TCDD : Carbon 13 labeled 2,3,7,8-tetrachlorodibenzodioxin
- *C-HxCDD:Carbon 13 labeled 1,2,3,6,7,8-hexachlorodibenzodioxin
- *C-QCDD : Carbon 13 labeled octachlorodibenzodioxin
- *C-TCDF : Carbon 13 labeled 2,3,7,8-tetrachlorodibenzofuran
- *C-HpCDF: Carbon 13 labeled 1,2,3,4,6,7,8-heptachlorodibensofuran

INITIAL CALIBRATION SUMMARY

INSTRUMENT						
TUDINGUM			 _		1	
CONC.			.]			
TIME			.			
STD.ID.			_	,		
91 4.7 01				RF	SD	RSD
COMPOUND				-KF		
2378 TCDD	1		.			
12378 PeCDD			_			
123478 HXCDD			-			
123678 HXCDD			.			
123789 HXCDD			_			
1234678 HpCDD			_			
OCDD						
2378 TCDF						
12378 PeCDF						
23478 PeCDF						
123478 HxCDF			-			
123678 HXCDF			-			
123789 HXCDF			-			-
234678 HxCDF			-			
1234678 HpCDF			-			
1234789 HpCDF	\ <u></u>		_			
OCDF			_		1	
•				l 		
*C-TCDD1						
*C-TCDF1			- 			
*C-HXCDD2			_]		
*C-HpCDF2			_			
*C-OCDD2		l <i></i>	_	ł	l	·
•						
IS	STANDARDS		conc. p	g/ul		
1					_	
*C-TCDD	*13C12-2,3,7,8-TCDD		1		_]	
*C-TCDF	*13C12-2.3.7.8-TCDF]		_1	•
*C-HXCDD	*13C12-1.2,3,6,7,8-	HxCDD	1		_l	
	*13C12-1,2,3,4,6,7,	8-HpCDD			_1	
*C-HpCDF	*13C12-0CDDP	= 6				
*C-OCDD	-13012-0000		<u> </u>		_1	

^{1.} Based on recovery standard 13C-1234-TCDD 2. Based on recovery standard 12C-123789-HxCDD

FORM 4 CONTINUING CALIBRATION BUMMARY

THETRIMENT

	INITIAL CURVE (RF)	CONT. CALIB. (RF)	RPD	CONT. CALIB. (RF)	RPD	CONT. CALIB. (RF)	RPD
CONC.							
DATE/TIME							
STD.ID.				-			
						.	
78 TCDD					I		
378 PeCDD	· \						
3478 HxCDD						-	
3678 HXCDD					.	_	
3789 HxCDD					.	-]	
34678 HpCDD							
DD							
78 TCDF				"\	.	_	\-
378 PeCDF				_	.	-	\-
478 PeCDF				_	.\	-\ <u></u> -	1
3478 HXCDF				_	.	_	
3678 HXCDF				_		-	
3789 HXCDF					_		·
4678 HXCDF					_	- 	-
34678 HPCDF				_	_	_	
234789 HpCDF				_	_!	_	.
CDF	·	. 1					
•	•	1	1		_	_	.
C-TCDD1	\	-	-		_	_	.\
C-TCDF ⁺ _	\ <u></u>	-	-		_	_	.
C-HxCDD2		-	-			_	-
C-HpCDF ²		-	-1				.

FORM 5 STANDARD WORKSHEET

DATE INJ TIME: STD ID COLUMN		
inst id :	SCANI'S	ION AREA ION AREA AREA/AREA CONC RRE
13C-1234-TCDD		_(332)(334)
13C-2378-TCDD**	-	(332)(334)
2378-TCDD ¹		_(320)(322)
12378-PeCDD ¹		(358)(356)
13C-123789-HxCDD		(404)(402)
13C-123678-HxCDD***		(404)(402)
2378-HxCDD ²		(392)(390)
1234678-HpCDD ²		(426)(424)
13C-0CDD***		(470)(472)
ocdD3		(458)(460)
13C-2378-TCDF**		(316)(318)
2378-TCDF ⁴		(304)(306)
_2378-PeCDF ⁴		(342)(340)
2378-HxCDF ⁵		(376)(374)
13C-1234678-HpCDF***		(422)(420)
2378-HpCDF ⁵		(410)(408)
ocdf ⁵		(442)(444)

NOTE: If more than one ratio is required please write ratios directly on EICP.

⁻ Ion used for quanitation

^{** -} Quanitation based on 13C-1,2,3,4-TCDD

^{***-} Quanitation based on 13C-1,2,3,7,8,9-HxCDD

^{1 -} Int Std 13C-2,3,7,8-TCDD

^{2 -} Int Std 13C-1,2,3,6,7,8-HxCDD

^{3 -} Int Std 13C-OCDD

^{4 -} Int Std 13C-2,3,7,8-TCDF

^{5 -} Int Std 13C-1,2,3,4,6,7,8-HpCDF

FORM 6

COLUMN : INST ID : CURVE/STDS:		·				INJ TIM CLIENT SAMPLE SAMPLE	ID :_ ID :_	
COMMENTS :							_	
	SCAN1's		AREA			AREA/AREA		
13C-1234-TCDD		(332)		(334)				
13C-2378-TCDD**		(332)		(334)				
2178-TCDD1		(320)		(322)				
TOTAL-TCDD1		(320)		(322)				
12378-PeCDD1		(358)		(356)				
TOTAL-PeccD1	- T							
13C-123789-HxCDD		(404)		(402)	-			
13C-123678-H&CDD***		(404)		(402)				
XX2378-ExCDD2		(392)		(390)		<u>,</u>		
TOTAL-HXCDD2		(392)		(390)				<u> </u>
1234678-HpCQD ²		(426)		(424)				
TOTAL-HPCDD2		(426)		(424)				
13C-QCDD***		(470)		(472)				
ocdD3		(458)		(460)				
13C-2378-TCDF**		(316)		(318)				
2378-TCDF*		(304)		(306)	·			
TOTAL-TCDF4		(304)		(306)				
X2378-PeCDF4		(342)		(340)				
TOTAL-PeCDF4		(342)		_(340)) <u> </u>			
XX2378-HXCDE5		(376))	(374)				
TOTAL-HXCDF5		(376)		_(374))			
13C-1234678-HgCDF**	•	_(422)		(420))			
XXX2378-HPCDF5		<u> (410)</u>		(408))			
TOTAL-HPCDF5		(410)) 	_(408))			
ocdf ⁵		(442))	_(444))			
•					•			
# - Ion used for q## - Quanitation ba	manitation	1 ?-1.2.3	. 4 - TCDI	D				
** - Quanitation ba	sed on 130	2-1,2,3	7,8,9	- -HxCD	D	. 1		
1 - Int Std 13C-2.	3,7,8-TCDI)	= -				_	
2 - Int Std 13C-1,	2,3,6,7,8	-HxCDD				TE	k	
a = Tnt Std 13C-0C	:DD		٠					
4 - Int Std 13C-2, 5 - Int Std 13C-1,	2,3,4,6,7	, 8-HpCD	F			1		

NOTE: If more than one ratio is required please write ratios directly on EIC

FORM 7 QUALITY CONTROL REPORT

CYER NO									
SITE EPA SAMPLE	ID.			<u> </u>					
		HA?	RIX SPI	KB/HATRII	E SPIKE	DUPLICA	TE RESU	LTB	
COMPOUND	eam Con	PLE C.	SPIKE ADDED MS	MS CONC.	MS REC	SPIKE ADDED MSD	MSD CONC.	MSD REC.	\$RPD
(units)	()	() 	()	5400FEB5	() 688868	===+=== ()		-422-496
TCDD			 						
PeCDD									
HXCDD		, <u></u>							
HpCDD									
OCDD									
TCDP					·.				
PeCDD									
HxCDD				.			.		
HpCDD			1		}				

OCDD

Form B-6

DIOXIN RAW SAMPLE DATA

Laboratory:	Sample No.:
Case/Batch No.:	Analyst(s):

TCDD Required 320/322 Ratio Window is 0.65-0.89

No. Peaks	Scan No.	320/322	Confirm as TCDD Y/N	Quantite C-13 2378-TCDD	C-13. 1234-TCDD	Dilution	Conc.
					·		
•					Tota	1 TCDD:	

TCDF Required 304/306 Ratio Window is 0.65-0.89

			Con-			•	1
No.			firmed es , TCDD	Quantite C-13	C-13		
Peaks	Scan No.	304/306	Y/Mari	2378-TCDD	1234-TCDD	Dilution	Conc.
•			CDD /1:		1234-75		1 .
		•		:			
						;	
	:						
			* "		·		;
					Tot	1 TCDF:	<u> </u>

B-13a

Form B-6A

DIOXIN RAW SAMPLE DATA

Laboratory:	Sample No.:
Cose/Batch No.:	Analyst(s):

PCDD Required 358/356 Ratio Window is 0.55-0.75

No. Peaks	Scan No.	358/356	Confirm as PCDD Y/N	Quantita C-13 2378-TCDD	C-13 1234-TCDD	Dilution	Conc.
		·					
į							
		,					·
ا					Tota	1 PeCDD:	

PCDF Required 342/340 Ratio Window is 0.55-0.75

No. Peaks	Scan No.	342/340	Con- firmed as PCDD Y/N	Quantita C-13 2378-TCDD	c-13 1234-TCDD	Dilution	Conc.
					Tota	al PeCDF:	

Form B-6B

DIOXIN RAW SAMPLE DATA

Papor	ratory:		-	20mh ve un. 1					
Case/Batch No.:				Analyst(s):					
		HxCDD Requ	1red 392/3	90 Ratio Wind	dow 18 0.69-	0.93			
No.	Sean No.	can No. 392/390		Quantitated vs C-13		Dilution	Conc.		
			1						

HxCDF Required 376/374 Ratio Window is 0.60-0.93

No.			firmed as PCDF	Quantita C-13	ted vs C-13		
Peaks	Scan No.	376/374	Y/N	2378-TCDD	1234-TCDD	Dilution	Conc.
							
	·		ļ	ļ			1
					1		ነ
				1		1	į
				ļ,			1
		<u> </u>					
	,			}]		
				4]	{
		1			}	1	
		<u> </u>			Total	1 HxCDF:	·

Total HxCDD:

Form B-60

DIOXIN RAW SAMPLE DATA

Laboratory:	Sample No.:
Case/Batch No.:	Analyst(s):

HpCDD Required 426/424 Ratio Window is 0.83-1.12

No. Peaks	Scan No.	426/424	Confirm as HpCDD Y/N	Quantit C-13 OCDD	ated va C-13 1234-TCDD	Dilution	Conc.
					Tot	1 HpCDD:	

HpCDF Required 410/408 Ratio Window is 0.83-1.12

No. Peaks	Scan No.	410/408	Confirmed as HpCDF Y/N	Quantita C-13 OCDD	C-13 1234-TCDD	Dilution	Conc.
				·			
					Tot	al HpCDF:	

Form B-61

DIOXIN RAW SAMPLE DATA

Labo	ratory:	Analyst(s):							
Case	/Batch No.:								
		OCDD Requi	red 458/460	Ratio Windo	1 0.75-1.0	01	•		
No. Peaks	Scan No.	458/460	Confirm as OCDD Y/N	Quentite C-13 OCDD	C-13 1234-TCDD	Dilution	Conc.		
,		·					i i		
	1						1		

OCDF Required 442/444 Ratio Window is 0.75-1.01

Ño. Peaks	Scan No.	442/444	Confirmed as OCDD Y/N	Quantite C-13 OCDD	C-13 1234-TCDD	Dilution	Conc.
		·				1	
	·		·				
		·					
					Tot	1 OCDF:	